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In this document, we present more experimental results
and analyses to complement the manuscript:

• Running speed analysis in Section 1.
• More comparisons. We compare the tracking accura-

cy vs. speed performance on both the OTB-2013 [23]
and OTB-2015 [24] datasets with more trackers in Sec-
tion 2.

• More ablation tests. We present the experiments by
directly fine-tuning a deep network with the initial in-
formation in Section 3.

1. Running Speed Analysis

The initialization time of the proposed model is about 2
seconds on the machine specified on L575. The final aver-
age running speed is related to the length of test sequences
as shown in the figure below. The average running speed on
the OTB-2015 dataset is 33.7 FPS.
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2. Tracking Accuracy vs. Speed

Figure 1 and Figure 2 show the tracking accuracy
vs. speed performance on the OTB-2013 and OTB-2015
datasets, respectively. We add more trackers (annotated
with gray square) using the reported tracking speed as their
source code is not available. While the comparisons based
on the reported results without using the source code on the
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same machine do not truly reveal the run time performance,
we add these results for completeness.

The trackers with the reported speed include DRT [19],
LSART [18], FlowT [28], SACF [25], SA-Siam [9], RAS-
Net [22], SiamRPN [11], RT-MDNet RT-MDNet, and
CFnet2-tri [7]. The other trackers including CCOT [6],
VITAL [17], DAT [15], MetaSDNet [14], ECO [5], STR-
CF [12], DSLT [13], MCPF [26], CREST [16], MCCT-
H [21], ACT [3], DSiamM [8], ECO-HC [5], BACF [10],
CFNet [20], SiamFC [2], Staple [1], Trace [4], and DaSi-
amRPN [27] are evaluated on the same machine.

Compared with all these state-of-the-art trackers, the
proposed algorithm achieves a favorable performance in
terms of speed and accuracy. The proposed tracker achieves
the best performance among the real-time trackers, which
can be attributed to the proposed target-active and scale-
sensitive features. The proposed features are generated by
the filters which are active to specific patterns of the target
and sensitive to scale changes. As such, the target-specific
and scale-sensitive features distinguish the target from the
background well and are sensitive to scale changes. On
the other hand, the proposed algorithm uses a simple track-
ing framework directly comparing the features of the target
template and the search region without a complicated infer-
ence model or an online update model. Therefore, the pro-
posed tracker achieve fast performance and prevents over-
fitting and model drifting.

3. More Ablation Tests
According to suggestions of reviewers, we compare the

proposed algorithm with the model which fine-tunes a deep
feature network directly. We conduct the experiments by
directly fine-tuning a deep network with the initial informa-
tion and concatenate 3 or 4 CNN layers as features. Table 1
shows that directly fine-tuning performs poorly and con-
catenating more layers does not improve tracking perfor-
mance. Concatenating low-level layers does not always im-
prove tracking performance as it makes the network model
complicated. In addition, using more layer features does not
solve the uncertainty problem because uncertainty comes

1



Tracking Speed 10x (FPS) 
-0.5 0 0.5 1 1.5 2 2.5

Su
cc

es
s r

at
e 

(A
U

C
)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Ours

CFnet2-tri

RT-MDNet

ACT

DSLTMetaSDNet

DaSiamRPNSACF

TRACA

VITAL

STRCF

MCCT-H
SA-Siam

RASNet

FlowT

DRT

LSART

SiamRPN

DAT

DSiamM
BACF

CREST

CFNet 

ECO

ECO-HC

MCPF

SiamFC

CCOT

Staple

Success rate (OPE) v.s. Speed on the OTB-2013 dataset 

Figure 1. Tracking accuracy vs. speed on the OTB2013 dataset. The proposed algorithm achieves a favorable performance against the
state-of-the-art trackers.
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Figure 2. Tracking accuracy vs. speed on the OTB2015 dataset. The proposed algorithm achieves a favorable performance against the
state-of-the-art trackers.



from an arbitrary target in the tracking task, which is un-
known before tracking.

Table 1. Comparison with the baseline by directly fine-tuning
and concatenating more features.

Tracker
OTB-2013 OTB-2015

Precision AUC Precision AUC

Finetuning 0.848 0.653 0.826 0.639
Threelayers 0.850 0.656 0.827 0.642
Fourlayers 0.817 0.635 0.817 0.633
Ours 0.896 0.680 0.866 0.660

Our method significantly differs from the approach by
directly fine-tuning a deep network with the initial informa-
tion in two aspects. First, we do not modify or change the
activations of existing pre-trained deep models. Instead, we
only select the target-active and the scale-sensitive filters
(channels). Second, the original deep models designed for
image classification is not effective for tracking due to the
use of spatial pooling, which decreases the valuable spatial
information that helps to precisely localize target objects.

Note that fine-tuning a deep network with the initial
frame would easily result in over-fitting due to limited sam-
ples in one image. In contrast, we aim to identify the target-
aware features. We use the given target information to com-
pute gradients of the proposed losses and identify the target-
specific channels according to the gradients, rather than us-
ing the given target information to fine-tune a network di-
rectly. In addition, a classification network usually needs a
large feature space to separate all possible (hundreds to t-
housands) classes, which is redundant for tracking as only
two classes (foreground and background) are essential for
a test sequence. As such, we propose to exploit features
specific to the target of interest in a test sequence.
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