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Methods aAUC (aFAR + aFRR)/2 ACC@1

F-Colors, Direct 66.61 41.56 10.06
F-Colors, Stage 1 87.59 18.95 42.33
F-Colors, Stage 1+2 92.93 13.61 58.32
B-Colors, Direct 79.63 30.46 25.47
B-Colors, Stage 1 94.38 11.75 62.78
B-Colors, Stage 1+2 96.32 9.56 68.83

Table S1. Average performances (%) of different domain-
differences on the C-MNIST data set. F-color and B-color stand
for foreground and background colors, respectively.

S1. Stability for Different Domain-Differences

To investigate the stability of our proposed method, we
conduct experiments with various domain-differences on
the C-MNIST data set. We consider each of the back-
ground color and the foreground color as a type of domain-
difference that groups digits, the other is allowed to share
digits for differ Ft domains.or eaench case, we randomly se-
lect 10 combinations of two different colors as two domains.
The average performances reported in Table S1 show stable
performances for both our OVRDL (stage 1) and our AAL
(stage 2) mechanisms.

S2. Proof for Theorem 1

Proof. Use the notations in Section S3.
If we have

P (Z | F) = P (Z), (S1)

then F and Z are independent. Therefore, let z be an arbi-
trary value of Z, we have

P (Ŷ | F(Y, Z = z)) = P (Ŷ | F(Y, Z 6= z)), (S2)
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which satisfy Equality of Odds:

P (Ŷ | Y,Z) = P (Ŷ | Y ). (S3)

For our model and optimization scheme, as mentioned in
Section S3, our discriminative networks learn to let P (Ẑ |
F) = P (Z | F). Then if we add a constraint to let P (Ẑ | F)
equal P (Z), the Equality of Odds can be achieved.

We can provide a straightforward strategy to let P (Ẑ |
F) equal P (Z). For r ∈ [kz], denote pr = P (Ẑ = r | F).
Without loss of generality, we assume P (Z = r) = 1

kz
for

all r ∈ [kz]. Then in Eq. (4), we can minimize the square
loss (pr − 1

kz
)2 to let P (Ẑ | F) equal P (Z).

In fact, in our Eq. (4) we optimize

min
{pr}

(pr∗ − 0)2 +
∑
r 6=r∗

(pr − 1)2,

s.t.
∑
r

pr = 1, pr ≥ 1,∀r ∈ [kz].
(S4)

where r∗ denotes the true label of Z for a specific data in-
stance. Such an optimization problem has the optimum so-
lution that pr = 0 if r = r∗ and pr = 1/(kz−1) otherwise,
which is close to the above solution that pr = 1

kz
(r ∈ [kz])

for large kz . We find our solution is simpler to implement
and has slightly better generalization performances in prac-
tise.

S3. Proof for Theorem 2
Proof. Let Y ∈ [ky] denote the variable of the true label
of the jth attribute, and let Z ∈ [kz] denote the variable of
the true label of any other attribute j′. Denote the predicted
label of the Y and Z by Ŷ and Ẑ, respectively.

Let F be the attribute vector variable of the jth attribute.
Consider F as a function of Y and Z: (Y, Z) → F, and
denote F(Y,Z) the attribute vector resulted from Y and Z.

S1



Let y and z be arbitrary values of Y and Z, respectively.
The learning goals starts from

P (Ẑ = z | F(Z = z)) = P (Ẑ = z | F(Z 6= z)),

P (Ŷ = y | F(Y = y)) = P (Ŷ 6= y | F(Y 6= y)) = 1,

(S5)

and

P (Ẑ = z | F) = P (Z = z | F),
P (Ŷ = y | F) = P (Y = y | F),

(S6)

and finally become

P (Z = z | F(Z = z)) = P (Z = z | F(Z 6= z)), (S7)

and

P (Y = y | F(Y = y)) = P (Y 6= y | F(Y 6= y)) = 1.
(S8)

Since z is arbitrary, Eq. (S7) holds only if F and Z are
independent. Meanwhile, since y is arbitrary, Eq. (S8) sug-
gests that F and Y are not independent. Therefore, if we
have a causality that Z → Y , F and Z will be not indepen-
dent, thus Eq. (S7) will not hold. But if the causal direction
is reversed, i.e., if we have a causality that Y → Z, although
F and Y are not independent, it is possible that F and Z are
independent.

On the other hand, if Eq. (S7) holds, F and Z are inde-
pendent. Then if Z is the only cause of Y , F and Y will
also be independent. Then Eq. (S8) will not hold. In ad-
dition, if Z is one of many causes of Y , since F and Z are
independent, then F is independent with the effect of Z on
Y . Therefore, the correlation between F and Y is limited,
and thus Eq. (S8) cannot hold perfectly.


