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1. S': Viewpoint estimation with Euler angles

We show the viewpoint estimation network architecture used in this paper in Fig. [l Given ResNetl101 as backbone
to provide a shared Pool5 feature (with 2048 output unit), we have 3 branches to estimate azimuth, elevation and in-plane
rotation (theta) angels. Each branch begins with a fully-connected layer (Fc8), with 1024 output units, and makes a prediction

for the 12 categories in Pascal3D+. Our prediction head is composed of two components: 1) absolute value prediction and 2)
sign prediction.
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Figure 1. Network architecture for viewpoint estimation by Euler angles on Pascal3D+.

We show the fine-grained evaluation in Table. |1} In comparison with Penedones et al. 5], spherical regression improves
the performance in all evaluation metrics, namely Acc@{ %, 75, 37 }.

We report the class-wise performance comparison in Table. [2] Prokudin et al. [6] wins the most categories under MedError
metric (5 out of 12). However, they made a larger mistake on difficult categories like boat, where the visual appearance has
larger variance. For Acc@% metric, our method wins the most (6 out of 12 categories). In comparison with Penedones et
al. [5], adding spherical regression module consistently helps increase the accuracy across almost all categories.

Table 1. Viewpoint estimation with fine-grained evaluation on Pascal3D+. We report results of Acc@{ %, {5, 27 } 1. Results generated
by spherical regression module (Sg’w) have a better alignment to the ground truth models.
MedErr| Acc@% 1 Acc@5 1T Acc@g; T
Penedones et al. [5]f 11.6 83.6 66.3 359
This paper: 5|1+ Si;;,-;; 9.2 88.2 74.1 46.0

T Based on our implementation.




Table 2. Category-wise evaluation of viewpoint estimation on Pascal3D+.

Method aero bike boat bottle bus car chair table mbike sofa train  tv mean
Mahendran etal. 145 226 358 93 43 81 19.1 30.6 188 132 7.3 16.0 16.6
5 Tulsianietal. 13.8 17.7 21.3 129 58 9.1 148 152 14.7 137 87 154 13.6
5 Mousavian etal. 13.6 125 228 83 3.1 58 119 125 123 128 6.3 119 11.1
i Suetal. 154 148 256 93 36 60 9.7 108 167 95 6.1 126 11.7
= Penedones et al. T 123 115 31.3 69 44 7.1 122 139 131 7.7 7.0 121 11.6
Prokudin et al. @ 9.7 155 456 54 29 45 13.1 126 11.8 9.1 43 12.0 122
Grabner et al. | 10.0 15.6 19.1 8.6 33 51 137 11.8 122 135 6.7 11.0 109
Mahendran etal. 85 148 205 7.0 3.1 51 93 11.3 142 102 5.6 11.7 10.1
This paper: T+ Séwp 92 11.6 206 73 34 48 82 85 121 87 6.1 101 9.2
Mahendran et al. N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
© Tulsiani et al. 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.808
@k Mousavian et al. 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.810
g Su etal. 0.74 0.83 0.52 091 091 0.88 0.86 0.73 0.78 090 0.86 0.92 0.820
<X Penedones et al. T 0.80 0.85 0.48 0.96 0.94 091 0.84 0.70 0.86 0.95 0.84 0.91 0.836

Prokudin et al. IE 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.838
Grabner et al. | 0.83 0.82 0.64 095 097 094 0.80 0.71 0.88 0.87 0.80 0.86 0.839
Mahendran et al. 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88 0.859

This paper: J[+ Sl 0.88 0.88 0.61 0.96 0.97 0.93 0.93 0.74 0.93 0.98 0.84 0.95 0.882

exp

T Based on our implementation.

2. S?: Surface normal estimation

We show the visualization of surface normal prediction in Fig. [2] The results from Zhang ez al. [9] are smoother than our
results from spherical regression, but it makes some mistake with quite large surface area, e.g. the wall on the picture at row
3 column 2. In terms of boundaries, our results tend to be sharper. This is mainly due to the classification branch, which
forces the prediction to choose the main direction in one out of four quadrants. Overall, our results maintain more details
than Zhang et al. [9].
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Figure 2. Visualization of Surface Normal Estimation on NYU v2. Predictions are made by model: “Zhang et al. [9]” and “Zhang et
al. [El] + szp”. While results from Zhang et al. [EI] are smoother, our method generates sharp boundaries and thus maintains details.



3. 53: 3D Rotation estimation with quaternions

We show a class-wise performance comparison based on Acc@ % in Fig. |3| Since we are predicting the 3D rotation just
from a single image, it can be seen that categories with high degree of symmetry have worse performance, e.g. bathtub, desk,

night-stand and table. In comparison with the regression of quaternion with flat VGG16, spherical regression consistently
helps increase the accuracy.
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Figure 3. Class-wise comparison of 3D rotation estimation on ModelNet10-SO3. Categories with high degree of symmetry are observed

to have worse performance, e.g. bathtub, desk, night-stand and table. Spherical regression module (wap) consistently helps increase the
performance over flat regression of quaternion by VGG16.

We show a visualization of 3D rotation estimation in Fig. 4{ The first row is the ground truth input images. We render the
predicted rotations from VGG16 and VGG16+S sl,p in second and third rows. We can see our result have a better alignment
to the ground truth models.

Ground Truth : 2 \\ \ 24 /
\ J J

VGG 16+5flat

A
oy
=
N
-
~—

VGG16+S3,,

-
-
-
—

Figure 4. Visualization of 3D rotation estimation on ModelNet10-SO3.

4. Derivation of Jacobian for Sy, and S,

First, we provide detailed derivation of Eq. 7 in the main paper. Given the {5 normalization form:

f(o))
Ek f(Ok)2

p; = g(05;0) =

with arbitrary univariate mapping f(-), we have:



df (o; HA
apj _ d(Oz:) .A_f(oj). do;
801‘ A?
df (o; df (o;
B 7fd(0i) -A— f(o5) - pi- J;(OZ)
= v
_ 1 [dfloy) ~  df(oi)
A dOi ¢ J dOi
B {“A) (1 =pi-p;), whenj=i
L) (0—p; - py), whenj#i
where A = />, f(or)?.
Thus the Jacobian matrix of g : O — P is as follows
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4.1. Sy, case

In this case, we only take flat /> normalization on O to obtain P, namely p; = ¢(0;;0) =

f(0:) = o; and f'(0;) = 1. Thus Eq. [§| becomes:
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where ® denotes outer product.
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4.2. S.,, case

In this case, we take spherical normalization on O to obtain P, namely p; = g(oj; 0) = \/ﬁ This means
f(0;) = €% and f’(0;) = €. Thus Eq. [§| becomes:
oP
J = 13
Seer = 30 (13)
PoPo PiPo - PnPo Po

boP1 PiP1 - PnP1 b1
= - . . . . (14)
= (I - P-P") diag(P) (15)
=(I—-P®P)-diag(P) (16)

where ® denotes outer product.

References

(1]

(2]
(3]

(4]
(5]
(6]
(7]

(8]
(9]

Alexander Grabner, Peter M Roth, and Vincent Lepetit. 3d pose estimation and 3d model retrieval for objects in the wild. In CVPR,
2018.

Siddharth Mahendran, Haider Ali, and René Vidal. 3d pose regression using convolutional neural networks. In /CCV, 2017.
Siddharth Mahendran, Haider Ali, and Rene Vidal. A mixed classification-regression framework for 3d pose estimation from 2d
images. In BMVC, 2018.

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana KoSecka. 3d bounding box estimation using deep learning and geom-
etry. In CVPR, 2017.

Hugo Penedones, Ronan Collobert, Francois Fleuret, and David Grangier. Improving object classification using pose information.
Technical report, Idiap, 2012.

Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. Deep directional statistics: Pose estimation with uncertainty quantification.
In ECCV, 2018.

Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn: Viewpoint estimation in images using cnns trained with
rendered 3d model views. In ICCV, 2015.

Shubham Tulsiani and Jitendra Malik. Viewpoints and keypoints. In CVPR, 2015.

Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee, Hailin Jin, and Thomas Funkhouser. Physically-based
rendering for indoor scene understanding using convolutional neural networks. In CVPR, 2017.



