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1. S1: Viewpoint estimation with Euler angles
We show the viewpoint estimation network architecture used in this paper in Fig. 1. Given ResNet101 as backbone

to provide a shared Pool5 feature (with 2048 output unit), we have 3 branches to estimate azimuth, elevation and in-plane
rotation (theta) angels. Each branch begins with a fully-connected layer (Fc8), with 1024 output units, and makes a prediction
for the 12 categories in Pascal3D+. Our prediction head is composed of two components: 1) absolute value prediction and 2)
sign prediction.
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Figure 1. Network architecture for viewpoint estimation by Euler angles on Pascal3D+.

We show the fine-grained evaluation in Table. 1. In comparison with Penedones et al. [5], spherical regression improves
the performance in all evaluation metrics, namely Acc@{π6 ,

π
12 ,

π
24}.

We report the class-wise performance comparison in Table. 2. Prokudin et al. [6] wins the most categories under MedError
metric (5 out of 12). However, they made a larger mistake on difficult categories like boat, where the visual appearance has
larger variance. For Acc@π

6 metric, our method wins the most (6 out of 12 categories). In comparison with Penedones et
al. [5], adding spherical regression module consistently helps increase the accuracy across almost all categories.

Table 1. Viewpoint estimation with fine-grained evaluation on Pascal3D+. We report results of Acc@{π
6
, π
12
, π
24
} ↑. Results generated

by spherical regression module (S3
exp) have a better alignment to the ground truth models.

MedErr↓ Acc@π
6 ↑ Acc@ π

12 ↑ Acc@ π
24 ↑

Penedones et al. [5]† 11.6 83.6 66.3 35.9

This paper: [5]†+ S1
exp 9.2 88.2 74.1 46.0

† Based on our implementation.



Table 2. Category-wise evaluation of viewpoint estimation on Pascal3D+.

Method aero bike boat bottle bus car chair table mbike sofa train tv mean
M

ed
E

rr
or

Mahendran et al. [2] 14.5 22.6 35.8 9.3 4.3 8.1 19.1 30.6 18.8 13.2 7.3 16.0 16.6
Tulsiani et al. [8] 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
Mousavian et al. [4] 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1
Su et al. [7] 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7
Penedones et al. [5]† 12.3 11.5 31.3 6.9 4.4 7.1 12.2 13.9 13.1 7.7 7.0 12.1 11.6
Prokudin et al. [6] 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0 12.2
Grabner et al. [1] 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9
Mahendran et al. [3] 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7 10.1
This paper: [5]†+ S1

exp 9.2 11.6 20.6 7.3 3.4 4.8 8.2 8.5 12.1 8.7 6.1 10.1 9.2

A
cc
@
π
/6

Mahendran et al. [2] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Tulsiani et al. [8] 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.808
Mousavian et al. [4] 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.810
Su et al. [7] 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.820
Penedones et al. [5]† 0.80 0.85 0.48 0.96 0.94 0.91 0.84 0.70 0.86 0.95 0.84 0.91 0.836
Prokudin et al. [6] 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.838
Grabner et al. [1] 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.839
Mahendran et al. [3] 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88 0.859
This paper: [5]†+ S1

exp 0.88 0.88 0.61 0.96 0.97 0.93 0.93 0.74 0.93 0.98 0.84 0.95 0.882
† Based on our implementation.

2. S2: Surface normal estimation
We show the visualization of surface normal prediction in Fig. 2. The results from Zhang et al. [9] are smoother than our

results from spherical regression, but it makes some mistake with quite large surface area, e.g. the wall on the picture at row
3 column 2. In terms of boundaries, our results tend to be sharper. This is mainly due to the classification branch, which
forces the prediction to choose the main direction in one out of four quadrants. Overall, our results maintain more details
than Zhang et al. [9].

This paper:
Zhang et al.
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Figure 2. Visualization of Surface Normal Estimation on NYU v2. Predictions are made by model: “Zhang et al. [9]” and “Zhang et
al. [9] + S2

exp”. While results from Zhang et al. [9] are smoother, our method generates sharp boundaries and thus maintains details.



3. S3: 3D Rotation estimation with quaternions
We show a class-wise performance comparison based on Acc@π

6 in Fig. 3. Since we are predicting the 3D rotation just
from a single image, it can be seen that categories with high degree of symmetry have worse performance, e.g. bathtub, desk,
night-stand and table. In comparison with the regression of quaternion with flat VGG16, spherical regression consistently
helps increase the accuracy.
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Figure 3. Class-wise comparison of 3D rotation estimation on ModelNet10-SO3. Categories with high degree of symmetry are observed
to have worse performance, e.g. bathtub, desk, night-stand and table. Spherical regression module (S3

exp) consistently helps increase the
performance over flat regression of quaternion by VGG16.

We show a visualization of 3D rotation estimation in Fig. 4. The first row is the ground truth input images. We render the
predicted rotations from VGG16 and VGG16+S3

exp in second and third rows. We can see our result have a better alignment
to the ground truth models.
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Figure 4. Visualization of 3D rotation estimation on ModelNet10-SO3.

4. Derivation of Jacobian for Sflat and Sexp

.
First, we provide detailed derivation of Eq. 7 in the main paper. Given the `2 normalization form:

pj = g(oj ;O) =
f(oj)√∑
k f(ok)

2

with arbitrary univariate mapping f(·), we have:



∂pj
∂oi

=

df(oj)
doi
·A− f(oj) · ∂A∂oi

A2
(1)

=

df(oj)
doi
·A− f(oj) · pi · df(oi)doi

A2
(2)

=
1

A

[
df(oj)

doi
− pi · pj ·

df(oi)

doi

]
(3)

=

{
f ′(oi)
A · (1− pi · pj), when j=i

f ′(oi)
A · (0− pi · pj), when j6= i

(4)

where A =
√∑

k f(ok)
2.

Thus the Jacobian matrix of g : O → P is as follows
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4.1. Sflat case

In this case, we only take flat `2 normalization on O to obtain P , namely pj = g(oj ;O) =
oj√∑

k o
2
k

. This means

f(oi) = oi and f ′(oi) = 1. Thus Eq. 8 becomes:
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where ⊗ denotes outer product.



4.2. Sexp case

In this case, we take spherical normalization on O to obtain P , namely pj = g(oj ;O) = eoj√∑
k(e

ok )2
. This means

f(oi) = eoi and f ′(oi) = eoi . Thus Eq. 8 becomes:
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= (I − P ⊗ P ) · diag(P ) (16)

where ⊗ denotes outer product.
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