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This document provides additional explanations about

the experimental setting for each of the five image restora-

tion tasks.

A. Implementation Details and Additional Re-
sults for the Five Tasks

A.1. Details of Training Method

We use the Adam optimizer with (β1, β2) = (0.9, 0.999)
and ε = 1.0 × 10−8 for training all the proposed DuRNs.

For loss functions, we use a weighted sum of SSIM and

l1 loss, specifically, 1.1 × SSIM + 0.75 × l1, for all the

tasks. There are two exceptions. One is Gaussian noise

removal on the BSD500-grayscale dataset [2], where we

use l2 loss. The other is raindrop removal, where we use

the same weighted loss for the first 4,000 epochs, and then

switch it to a single l1 loss for additional 100 epochs. The

initial learning rate is set to 0.0001 for all the tasks. All

the experiments are conducted using PyTorch [3]. Our

code and trained models will be made publicly available at

https://github.com/liu-vis/DualResidualNetworks

A.2. Noise Removal

Specification of ctl1 and ctl2 We show the specifica-

tion of ctl1 and ctl2 for each DuRB-P in Table 1, in which

l(= 1, . . . , 6) denotes the block-id of a DuRB; the “recep.”

denotes the receptive field of convolution. It is observed

that the paired convolution has a large- and small- receptive

field for each DuRB-P (see each row in the table), and the

Table 1: The specification of ctl1 and ctl2 for DuRB-P’s for

noise removal. The “recep.” denotes the receptive field of

convolution, i.e., delation rate × (kernel size - 1) + 1.

layer kernel dilation recep. layer kernel dilation recep.

ctl=1
1 5 1 5×5 ctl=1

2 3 1 3×3

ctl=2
1 7 1 7×7 ctl=2

2 5 1 5×5

ctl=3
1 7 2 13×13 ctl=3

2 5 1 5×5

ctl=4
1 11 2 21×21 ctl=4

2 7 1 7×7

ctl=5
1 11 1 11×11 ctl=5

2 5 1 5×5

ctl=6
1 11 3 31×31 ctl=6

2 7 1 7×7

size of the receptive fields of ctl1 and ctl2 increases with l
with an exception at l = 5, which is to avoid too large a re-

ceptive field. By this design we intend to make each block

look at the input image at an increasing scale with layers in

the forward direction.

Experimental Setting for Gaussian Noise Removal In

training, we set batch size = 100. Each input image in a

batch is obtained by randomly cropping a 64 × 64 region

from an original training noisy image. We exactly followed

the procedure of [5] to generate noisy images for training

our network.

Experimental Setting for Real-World Noise Removal In

training, we randomly select 30 out of 40 pairs of a high

resolution noisy image and a mean image (used as ground

truth) for constructing the training dataset. We set input

patch size = 128×128, and use 30 patches (each of which is

randomly cropped from a different training image) to create

one batch. To test the CNNs including ours and the base-

lines, we use the remaining 10 image pairs; specifically, we

randomly crop ten 512 × 512 patches from each of them,

yielding 100 patches that are used for the test.

A.3. Motion Blur Removal

Table 2: The specification of ctl1 for DuRB-U’s for motion

blur removal.

layer kernel dilation recep. layer kernel dilation recep.

ctl=1
1 3 3 7 ctl=4

1 7 1 7

ctl=2
1 7 1 7 ctl=5

1 3 2 5

ctl=3
1 3 3 7 ctl=6

1 5 1 5

Specification of ctl1 and ctl2 The specification of ctl1 is

shown in Table 2. For ctl2, we use an identical configuration,

kernel size = 3× 3, dilation rate = 1 and stride = 2, for all

DuRB-U’s. We intend to simply perform down-sampling

with ctl2.

Experimental Setting on GoPro Dataset In training, we

set batch size = 10. Each input image in a batch is obtained

by randomly cropping a 256 × 256 patch from the re-sized



Table 3: The specification of ctl1 for DuRB-US’s for haze

removal.

layer kernel dilation recep. layer kernel dilation recep.

ctl=1
1 5 1 5 ctl=7

1 11 1 11

ctl=2
1 5 1 5 ctl=8

1 11 1 11

ctl=3
1 7 1 7 ctl=9

1 11 1 11

ctl=4
1 7 1 7 ctl=10

1 11 1 11

ctl=5
1 11 1 11 ctl=11

1 11 1 11

ctl=6
1 11 1 11 ctl=12

1 11 1 11

version (640 × 360) of an original training image of size

1280 × 720. In testing, we use the re-sized version (640 ×
360) of the original test images of size 1280 × 720 as in

training.

Experimental Setting on Car Dataset The Car dataset

was used only for evaluation. We down-scale the blur im-

ages from their original size 720×720 to 360×360 and in-

put them to the DuRN-U trained using GoPro-train dataset

for de-blurring. The result is then up-scaled to 700 × 700
and fed into YOLOv3.

Additional Examples More examples of motion blur re-

moval on GoPro-test dataset are shown in Fig. 1.

A.4. Haze Removal

Specification of ctl1 and ctl2 The specification of ctl1 is

shown in Table 3. For ctl2, we use an identical configuration,

i.e., kernel size = 3 × 3, dilation rate = 1 and stride = 2,

for all the DuRB-US’s. We intend to simply perform down-

sampling with ctl2.

Experimental Setting on Dehaze Dataset In training, we

set batch size = 20. Each input image in a batch is obtained

by randomly cropping a 256× 256 region from an original

training image of size 512× 512.

Experimental Setting on RESIDE In training, we set

batch size = 48. Each input image in a batch is obtained

by randomly cropping a 256× 256 region from an original

image of size 620× 460.

Visualization of Internal Layer Activation Figure

5 shows activation maps of several chosen blocks (i.e.,

DuRB-US’s) in the network for different input images.

They are the sums in the channel dimension of activation

maps of the input to the first DuRB-US (l = 0), and of the

output from the third (l = 3), sixth (l = 6), and twelfth

(l = 12) DuRB-US’s. It is seen that the DuRN-US com-

putes a map that looks similar to transmission map at around

l = 3.

Additional Examples More examples of haze removal are

shown on Figs. 2, 3 and 4. In Fig. 4, we show the results

for images of hazy scenes that are captured using iPhone-6

plus by us.

Table 4: The specification of ctl1 for DuRB-S’s and DuRB-

P’s of the DuRN-S-P for raindrop removal.

DuRB-S

layer kernel dilation recep.

ctl=1
1 3 12 25

ctl=2
1 3 8 17

ctl=3
1 3 6 13

DuRB-P

layer kernel dilation recep.

ctl=1
1 3 2 5

ctl=2
1 5 1 5

ctl=3
1 3 3 7

ctl=3
1 7 1 7

ctl=3
1 3 4 9

ctl=3
1 7 1 7

A.5. Raindrop Removal

Specification of ctl1 and ctl2 The specification of ctl1 for

the three DuRB-S’s and the six DuRB-P’s is shown in Table

4. For ctl2, we use an identical configuration, kernel size

= 3×3 and dilation rate = 1, for all the DuRB-S’s, and use

an identical configuration, kernel size = 5 × 5 and dilation

rate = 1, for all the DuRB-P’s.

Experimental Setting on RainDrop Dataset In training,

we set batch size = 24. Each input image in a batch is

obtained by randomly cropping a 256 × 256 region from

the original image of size 720× 480. As mentioned before,

we train the network 1.1 × SSIM + 0.75 × l1 using the

loss for 4,000 epochs, and then switch the loss to l1 alone,

training the network for additional 100 epochs. We did this

for faster converging.

Additional Examples More examples of raindrop removal

are shown in Fig. 6.

A.6. Rain-streak Removal

Specification of ctl1 and ctl2 We use the same configu-

ration as noise removal. See Table. 1. Note that we use

DuRB-S for this task.

Experimental Setting on DDN Data To train the DuRN-

S, we set batch size = 40. Each input image in a batch is

obtained by randomly cropping a 64 × 64 region from an

original training image.

Experimental Setting on DID-MDN Data In training, we

set batch size = 80. Each input image in a batch is obtained

by randomly cropping a 64 × 64 region from an original

training image.

Additional Examples More examples of rain-streak re-

moval on synthetic rainy images and on real-world rainy

images are shown in Fig. 7 and Fig. 8, respectively.

A.7. Performance of DuRBs on Non-target Tasks

We have presented the four versions of DuRB, each of

which is designed for a single task. To verify the effective-

ness of the design choices, we examine the performance of

each DuRB on its non-target tasks. Specifically, we evaluate



Table 5: Performance (PSNR/SSIM) of the four versions of DuRBs (i.e., -P, -U, -US, and -S) on different task.

Real-noise Motion blur Haze Raindrop Rain-streak

DuRB-P 36.83 / 0.9635 29.40 / 0.8996 29.33 / 0.9761 24.69 / 0.8067 32.88 / 0.9214

DuRB-U 36.63 / 0.9600 29.90 / 0.9100 30.79 / 0.9800 24.30 / 0.8067 33.00 / 0.9265
DuRB-US 36.61 / 0.9591 29.96 / 0.9101 32.60 / 0.9827 22.72 / 0.7254 32.84 / 0.9238

DuRB-S 36.82 / 0.9629 29.55 / 0.9023 31.81 / 0.9792 25.13 / 0.8134 33.21 / 0.9251

the performance of every combination of the four versions

of DuRB and the five tasks. For noise, motion blur, haze,

raindrop and rain-streak removal, we train and test networks

consisting of each version of DuRB on Real-World Noisy

Image Dataset, GoPro Dataset, Dehaze Dataset, RainDrop

Dataset and DID-MDN Data. The results are shown in Ta-

ble 5. It is seen that in general, each DuRB yields the best

performance for the task to which it was designed. For mo-

tion blur removal, DuRB-US performs comparably well or

even slightly better than DuRB-U, which is our primary de-

sign for the task. We think this is reasonable, as DuRB-

US contains the same paired operation as DuRB-U (i.e., up-

and down-sampling), contributing to the good performance.

Their performance gap is almost negligible and thus DuRB-

U is a better choice, considering its efficiency.



DuRN-UDeBlurGANBlurred Sharp

Figure 1: Examples for motion blur removal on GoPro-test dataset.



Hazy image DCPDN DuRN-US Ground truth Hazy image GFN DuRN-US Ground truth

Figure 2: Examples of haze removal on synthetic hazy images.

GFN DuRN-USDCPDNInput

Figure 3: Examples of haze removal on the hazy images used in previous works such as [1, 4, 6]



GFN DuRN-USDCPDNInput

Figure 4: Examples of haze removal on real-world hazy images.

Input image Output imageTransmission map Ground truth Input image Output imageTransmission map Ground truth

Input image Output imageTransmission map Ground truth Input image Output imageTransmission map Ground truth

Figure 5: Visualization of internal activation maps of the DuRN-US.



Rainy image Qian et al.DuRN-S-P Ground truth-Attention map Residual map

Figure 6: Examples of raindrop removal along with interal activation maps of DuRN-S-P. The “Attention map” and “Residual

map” are the outputs of the Attentive-Net and the last Tanh layer shwon in Fig. 13 in the main-text; they are normalized for

better visibility.



DID-MDNDDN- RESCAN DuRN-S Ground truthRainy

Figure 7: Examples of deraining on synthetic rainy images.

DID-MDNDDN- RESCAN DuRN-SRainy

Figure 8: Examples of deraining on real-world rainy images.
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