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In this supplementary document, we give more details
about the experimental settings and results.

1. Further Discussion about LIRG-t

Though we have verified the effectiveness of LIRG-t by
comparing the performance of LIRG and LMTK , the per-
formance of single LIRG-t is not shown due to the limita-
tion of space. Therefore, in this section, we train the student
network only with LIRG-t, and analyze the performance.

In the experiment, ResNet20 and ResNet20-x0.5 are
adopted as the teacher network and the student network, re-
spectively. CIFAR10 is used for training and validation. In
addition, besides LIRG, FSP [2] is selected as a competing
method, since FSP also distills knowledge from the overall
inference procedure.

1.1. Comparison with LIRG

As shown in Figure 1, both LIRG and LIRG-t help im-
prove the performance significantly. In addition, LIRG and
LIRG-t are complementary to each other.

For LIRG, though the performance gain over the base-
line is more significant than that of LIRG-t, it is much
more sensitive to the value of λ2. In particular, when λ2
varies from 0.0005 to 0.5, the performance fluctuation is
0.6 − 0.8%. Under the same condition, the performance
fluctuation of LIRG-t is 0.2 − 0.4%. It is because LIRG

concentrates on extracting sufficient knowledge (instance
relationships and instance features). In this way, it leads
to strong regularization to the student and cause large fluc-
tuation. On the contrary, LIRG-t considers the feature space
transformation, which is a more moderate constraint com-
pared with LIRG. It helps the student converge smoothly
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Figure 1: (a) Performance under different batch sizes and
λ2 settings of LIRG. (b) Performance under different batch
sizes and λ3 settings of LIRG-t. Note that “Baseline” is
trained with LGT only.

and stably. Therefore, LIRG and LIRG-t are complemen-
tary to each other. By combining them, LMTK extracts
sufficient and moderate knowledge, and thus shows stable
convergence as well as large performance improvement.

1.2. Comparison with FSP

Both FSP and the proposed LIRG-t take the feature s-
pace transformation as the distilled knowledge. FSP de-
fines a Flow of Solution Procedure (FSP) matrix to transfer
information. The inner product of the i-th channel of the l1-
th layer and the j-th channel of the l2-th layer is computed
as an element of the matrix. While LIRG-t first performs
global average pooling for the feature maps of the l1-th lay-
er and the l2-th layer. Then, Euclidean distance of the two
pooled features is computed as the element of the feature
transformation matrix.

However, there are two limitations of FSP. First, the
computational cost of FSP is rather high. For N in-
put instances, FSP needs to compute inner production for
N × Cl1 × Cl2 times, where Cl1 and Cl1 are the channel



Table 1: Training time of one iteration when batch size is
64.

KD [1] FSP [2] AT [3] Rocket [4] LIRG LMTK

CIFAR10/100 (ms) 50 302 74 51 190 205

ImageNet (s) 3.85 4.23 3.97 3.86 3.92 4.04

numbers of the l1-th layer and the l2-th layer, respectively.
While the proposed LIRG-t only requires N times of com-
putation. Further, the inner production is computed on the
whole feature map for FSP, which requires much compu-
tational resources. On the contrary, LIRG-t uses the aver-
age pooled feature vectors for computation. Therefore, the
training time of FSP is 4− 5 times of that of LIRG-t.

Second, FSP is a relative hard constraint. Since it uti-
lizes very detailed information, for example, every pixel of
the intermediate-layer features, it is hard for the student to
converge to a good solution. Therefore, it takes longer time
to select an appropriate weight for the FSP loss. In addition,
using pixel level feature maps makes FSP easier to be influ-
enced by the noise compared with the proposed LIRG-t.

In conclusion, though both FSP and the proposed
LIRG-t extract knowledge from the feature space transfor-
mation, LIRG-t not only achieves competitive performance,
but also takes much less time to train (see Table 1).

2. More Details on Training Complexity
Due to the proposed method introduces three types of

knowledge and the corresponding hint loss functions to the
knowledge distillation framework, the significant perfor-
mance gain may be obtained at the expense of higher train-
ing complexity. However, according to our experiments in
Table 1, the additional training time and GPU memory cost
are limited, especially for larger dataset scenarios.

Concretely, on CIFAR10/100, the proposed method
takes around 4 times of training time of the standard method
(KD). On ImageNet, all the proposed methods have simi-
lar training time and the proposed time only takes 5% more
time than KD. For the overall training process, the proposed
method takes 3-4 hours longer than that of KD. In addition,
for both scenarios, the additional GPU memory is less than
100M. Therefore, the extra training time and GPU memo-
ry cost are acceptable for small-scale dataset while they are
negligible for large dataset.

3. More Details on Hyper-parameter Tuning
The additional loss functions bring more hyper-

parameters to be tuned. There are three penalty coefficients
including λ1 and λ2 for LIRG, and λ3 for LIRG-t. Dur-
ing hyper-parameter tuning, λ2 is the main parameter to be
tuned. The other two λ’s are easier to be tuned because the

performance is not very sensitive to them.
In order to reduce the search space, we take a greedy

strategy for hyper-parameter search. To be specific, we first
conduct experiments to select the best λ1. Second, we fix
λ1 and search the best λ2. Finally, λ3 is selected based on
the best λ1 and λ2. This strategy significantly reduces the
search space and helps find appropriate hyper-parameters
in short time. Therefore, the additional hyper-parameters
do not increase the difficulty of tuning.
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