
Appendix

A. More Implementation Details

Code will be made available.

A.1. Synthetic datasets

For fair comparison, we directly used the experimental
setting and the evaluation protocol in [12]. The 2D ring
has 8 Gaussian grid (std=0.05) equally distributed on a cir-
cle with r = 2, while the 2D grid has 5x5 Gaussian grid
(std=0.1) equally distributed in a 8x8 square.

A.2. RGB Hand datasets

Our experiments were conducted on three datasets. First,
we augmented a large-scale synthetic hand dataset. Then,
we tested our method on two real datasets.

GANerated Hands [7]. This dataset is a synthetic dataset
with 332k RGB images for hands. Those images were
translated from SynthHands [8] via cycle consistency [2].
We collected frequently interacted objects from COCO [5]
and inserted it onto the images without objects to form a
new set of with-object data. In this way, we could get the
object masks with visibility annotation. Note that currently
there is no dataset with visibility annotation available ([13]
does not release their used dataset). For the experiments,
we equally (50/50) split the train/test set. The final dataset
consists of 143k images for training.

Stereo Hand Benchmark [14]. This dataset consists of
12 sequences including 36k rgb images without hand-object
interactions. For the experiments, we used the conventional
split in [16] for direct comparison, where 10 sequences with
30k images were used for training and the rest were used for
testing.

First-person Hand Action Benchmark (FPHAB) [1].
This large-scale dataset has 1200 sequences. We used the
280 sequences on hand-object interaction with 6-DOF ob-
ject annotations. Specifically, we used 227 sequences with
17k images for training and 53 sequences with 4k images
for testing.

A.3. Network architecture

For the experiments on synthetic Gaussian datasets, im-
age generation and text-to-image translation, we directly
borrow the architecture of the baseline methods [12, 9, 10]
respectively for fair comparison. For the task of hand pose
estimation, our network architecture is illustrated in Figure
1. We used the same design protocol as [7, 11], where 2D

heatmap was first estimated to guide the 3D joint predic-
tions. When computing the l2 distance, only visible joints
were considered.

A.4. Differentiable 2D projection

We used the projected 2D heatmap in the image-pose
GAN formulation. However, it is worth noting that sim-
ply projecting and transferring the predicted 3D joints into
2D heatmap is non-differentiable. To get the meaningful
gradient, we employed the differentiable image sampling
technique in [3]. In this way, we could reparametrize the
2D heatmap with respect to the predicted 3D pose.

A.5. More detailed experimental settings

Image-to-image translation. Our implementation is
mainly based on the official code1 provided by [15] where
we adapted the same architectures for the generator and
the discriminator. Compared to the original Bicycle-
GAN [15] implementation, we removed the image encoder
which maps the RGB images to a coding space for re-
parametrizing the Gaussian distribution and replaced the in-
stance normalization with spectral normalization [6]. We
followed the same train/val/test split setting as [15]. We
trained our model with a batch size of 8 for 325 epochs. We
used α = 0.8 for normalized diversity loss and 2.0 as L1 re-
construction weighted factor. During training, we randomly
sampled 6 codes from the latent space to computed the di-
versity loss. Our initial learning rate was 2e-4 which was
decayed by 0.1 for every 200 epochs. For quantitative eval-
uation, we randomly selected 100 images from validation
set and sampled 38 outputs for each input image.

B. More Qualitative Results
We show more qualitative results on multimodal hand

pose estimation from RGB images in Figure 2.

1https://github.com/junyanz/BicycleGAN
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Figure 1: Network architecture for hand pose estimation. For the backbone, we directly borrow the architecture from [7].
Following the design protocol of [7, 11], we use the extracted base features to first reconstruct the 2D heatmap. Then the
predicted heatmap is concatenated with the base features. ‘A’ and ‘B’ denote where the noise vector z ∈ R10 is included via
concatenation in ‘Ours+’ and ‘Ours’ respectively. The part in the dashed line, which is a bottleneck structure, is not used in
‘Ours+’. Only visible joints contribute to the l2 distance for both the 2D heatmap and 3D predictions. Specifically, the input
image is sized 128x128. ‘conv1’ denotes one stride-1 conv layer and two stride-2 deconv layers. ‘conv2’ denotes two stride-2
conv layers. Both ‘fc1’ and ‘fc2’ denotes two sequential fc layers. The final 3D predictions has a dimension of 21x3=63.
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Figure 2: More qualitative comparison between VAE [4] and our method on 3D hand predictions and its projections on 2D
image (better viewed when zoomed in).
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