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1. The derivation of Variational Bayesian Dropout
With the proposed hierarchical prior p(W, γ) = p(W|γ)p(γ), variational posterior distribution q(W, γ) = q(W)q(γ),

and the original objective:
DKL(q(W)||p(W, γ|D)), (1)

we have:

min
α,θ,γ

DKL(q(W, γ)||p(W, γ|D))

= min
α,θ,γ

∫
q(W, γ) log

q(W, γ)

p(W, γ|D)

= min
α,θ,γ

∫
q(W, γ) log q(W, γ)−

∫
q(W, γ) log p(W, γ|D)

=max
α,θ,γ

∫
q(W, γ) log p(W, γ|D)−

∫
q(W, γ) log q(W, γ)

=max
α,θ,γ

∫
q(W, γ) log p(W, γ)p(D|W)−

∫
q(W, γ) log p(D)−

∫
q(W, γ) log q(W, γ)

≡max
α,θ,γ

∫
q(W, γ) log p(D|W) +

∫
q(W, γ) log p(W, γ)−

∫
q(W, γ) log q(W, γ)

=max
α,θ,γ

∫
q(W, γ) log p(D|W)−

∫
q(W, γ) log

q(W, γ)

p(W, γ)

(2)

As mentioned in the manuscript, we assume that q(W, γ) = q(W)q(γ), hence we have:

max
α,θ,γ

∫
q(W, γ) log p(D|W)−

∫
q(W, γ) log

q(W, γ)

p(W, γ)

=max
α,θ,γ

∫
q(W)q(γ) log p(D|W)−

∫
q(W)q(γ) log

q(W)q(γ)

p(W|γ)p(γ)

=max
α,θ,γ

∫
q(W) log p(D|W)−

∫
q(W)q(γ) log

q(W)

p(W|γ)
−
∫
q(W)q(γ) log

q(γ)

p(γ)

=max
α,θ,γ

LD(α, θ)−DKL(q(W)||p(W|γ))−DKL(q(γ)||p(γ))

(3)
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2. The proof of Proposition 2
To proof Proposition 2, we only need to proof that DKL(q(γ)||p(γ)) becomes a constant and can be neglected during

optimization. To this end, we employ mean-field variational approximation viz., q(γ) =
∏K
k=1

∏D
d=1 q(γk,d), to gather with

p(γ) =
K∏
k=1

D∏
d=1

p(γk,d) =
K∏
k=1

D∏
d=1

U(γk,d|a, b), we have:

DKL(q(γ)||p(γ)) =
K∏
k=1

D∏
d=1

DKL(q(γk,d)||p(γk,d)), (4)

Now, we can directly investigate DKL(q(γk,d)||p(γk,d)),

DKL(q(γk,d)||p(γk,d))

=

∫
q(γk,d) log

q(γk,d)

p(γk,d)

=

∫
q(γk,d) log q(γk,d)−

∫
q(γk,d) log p(γk,d)

=−H(γk,d)−
∫
q(γk,d) log p(γk,d),

(5)

where H(γk,d) denotes the entropy of a random variable γk,d. As defined in main paper, q(γk,d) obeys a delta distribution,
henceH(γk,d) = 0 because delta distribution do not provide any uncertainty [4]. As a result, we obtain:

DKL(q(γk,d)||p(γk,d)) = −
∫
q(γk,d) log p(γk,d), (6)

To simplify the problem, assuming the dimension of γk,d is 1, e.g., p(γk,d) = 1/(b− a), thus we have:

DKL(q(γk,d)||p(γk,d))

=−
∫ a

−∞
q(γk,d) log p(γk,d)−

∫ b

a

q(γk,d) log p(γk,d)−
∫ +∞

b

q(γk,d) log p(γk,d)

=− log β

∫ a

−∞
q(γk,d)− log(1/(b− a))

∫ b

a

q(γk,d)− log β

∫ +∞

b

q(γk,d),

(7)

where β → 0 (Strictly speaking, β should be equal to 0, since p(γk,d) = 0 in the intervals (−∞, a] and [b,+∞)). Thus, if
q(γk,d) as a delta function lies in [a, b], e.g., δ(γk,d− γ′k,d) and γ′k,d lies in [a,b], then

∫ a
−∞ q(γk,d) and

∫ +∞
b

q(γk,d) is equal

to 0, so DKL(q(γk,d)||p(γk,d)) = log(b − a), else,
∫ b
a
q(γk,d) is equal to 0, and DKL(q(γk,d)||p(γk,d)) = +∞. To avoid

DKL(q(γk,d)||p(γk,d)) = +∞, [a, b] is generally regarded as a large enough interval, so the KL is a constant log(b− a) and
can be neglected.

3. The experimental setting on MNIST Dataset
Following the suggestion in [6], we adopt a fully connected neural network consisting of 3 hidden layers and rectified

linear units as the basic deep neural network. For the dropout with Bernoulli noise or Gaussian noise, we fix the dropout
rate as p = 0.5 for the hidden layers and p = 0.2 for the input layer as recommended in the references. All networks are
trained for 50 epochs with batch size 1000 and Adam optimizer [1] with initial learning rate 0.001. To reduce the influence
of random initialization, we train the network for each methods within 5 random runs and report the average results of those
5 trained networks during testing.

4. The experimental setting on Cifar-10 Dataset
Following the setting in [2], the basic neural network for all methods consists of two convolutional layers followed by two

fully connected layers. In these two convolutional layer, there are 32× scale and 64× scale feature maps, respectively. The
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kernels size and stride parameter is 3 × 3 and 2. Each convolutional layer is further fed into a softplus unit for improving
non-linearity. In addition, each fully connected layer contains 128 × scale hidden units. In experiments, we fix the dropout
rate as 0.5 for the dropout with Bernoulli noise or Gaussian noise. For each method, the network is trained for 100 epochs
with batch size 1000 and Adam optimizer with initial learning rate 0.001. Similarly, we also report the average test result for
each method through training the network in 5 random runs.

5. Structured compressing for VGG on Cifar-10 Dataset
To prove that VBD scales to deep architectures, we apply it to a VGG-like network 1 that was adapted for the CIFAR

dataset. The network consists of 13 convolutional and two fully-connected layers, trained with pre-activation batch normal-
ization and Binary Dropout. At the start of the training procedure, we use pre-trained weights for initialization. We compare
the proposed method with existing variational dropout based methods, Variational Dropout (VD) [3] and SBP [5]. Table 1
shows the advantage of the proposed VBD in structured compressing for the deep VGG-like architecture, compared with the
others.

Table 1. Compressing VGG on Cifar-10 Dataset.
Methods Error % Neurons per Layer
Original 7.2 64 - 64 - 128 - 128 - 256 - 256 - 256 - 512 - 512 - 512 - 512 - 512 - 512 - 512

VD 7.2 64 - 62 - 128 - 126 - 234 - 155 - 31 - 81 - 76 - 9 - 138 - 101 - 413 - 373
SBP(a) 7.5 64 - 62 - 128 - 126 - 234 - 155 - 31 - 79 - 73 - 9 - 59 - 73 - 56 - 27
SBP(b) 9.0 44 - 54 - 92 - 115 - 234 - 155 - 31 - 76 - 55 - 9 - 34 - 35 - 21 - 280

Ours 8.8 38 - 62 - 127 - 128 - 229 - 193 - 93 - 32 - 16 - 11 - 5 - 8 - 12 - 12
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