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In these pages we collect additional results and details
that due to lack of space were not included in the paper.

1. RGB-D SLAM Dataset

We perform additional experiments on the RGB-D
SLAM dataset [3]. In Figures 1 and 2 we visualize the LRF
repeatability on two view pairs of different room interiors.

In Figure 3 we visualize an overview of the complete
pipeline together with an evaluation of our method in com-
parison with SHOT [4]. For these tests, we adopt the Eu-
clidean distance from a fixed point (assumed to be in the
center of the scene) as the scalar function used in the com-
putation of our gradient-based LRFs. This choice leads to
coherent functions and thus stable gradients. We compare
the x axes alone (obtained as the gradient of the selected
scalar function in our case) as well as the complete LRFs of
the two approaches. For the sake of visualization, we show
these on a selection of points in the common regions of the
two views.

At the bottom of Figure 3 we eventually compare the
MeanCos score (encoding the LRF repeatability) and the
matching error (encoding the descriptor repeatability); the
latter is computed as the Euclidean distance between the
matching point provided by each method and the ground
truth correspondence.

2. Angel Dataset

In Table 1 we collect all the results on the Angel point
clouds [2]. On this data, both Ours FLARE and Ours
STED outperform the competitors on all the proposed met-
rics, with Ours STED providing the best results overall.
Note that in the last row (‘% Cor.”) we are evaluating the de-
scriptor repeatability; we do so by injecting our LRFs into
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the SHOT pipeline for computing local descriptors. For this
reason, we only compare with SHOT and denote FLARE as
not evaluated (n.e.).

A qualitative comparison is provided in Figure 4, where
two views of the Angel subset are visualized. Note the
large amount of dark red points visible in the first column
(SHOT), indicating large deviation from the ground truth
correspondence; this contrasts the large amount of white
points (small to no error) in the last column (Ours STED).
The improvement is better seen from the zoom-ins at the
bottom of the figure.

FLARE | SHOT | Ours FLARE | Ours STED
MeanCos 0.38 0.19 0.49 0.69
ThCos 0.12 0.06 0.12 0.16
%Cor. n.e. 0.13 0.17 0.25

Table 1. Comparison between FLARE, SHOT and our method on
the Angel subset. Bold numbers denote best performance.

3. Deformable shape matching

Finally, in Figure 5 we report the error rates for de-
formable matching on the centaur class from the TOSCA
dataset. Similarly to the results reported for the other
classes (see main manuscript), we demonstrate a big gap
in performance in comparison to SHOT and the mean and
Gaussian curvature baselines.
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Figure 1. LRF repeatability on a pair of views of a room (depicted on the left; their ground-truth alignment is at the bottom). The MeanCos
score is encoded as a heat map, growing from red (gross misalignment) to white (perfect alignment). For our method, the error is only the
inevitable one localized on non-overlapping regions between the two views due to their partiality. See also Figure 2.

Figure 2. LRF repeatability on a pair of views from the RGB-D SLAM dataset (depicted on the left; their ground-truth alignment is on
the bottom). The MeanCos score is encoded as a heat map, growing from red (gross misalignment) to white (perfect alignment). For our

method, the error is only the inevitable one localized on non-overlapping regions between the two views due to their partiality. See also
Figure 1.
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Figure 3. LRF repeatability and descriptor matching comparison on two views of the same room (depicted on the top) from the RGB-D
SLAM dataset. Top to bottom: Scalar functions adopted in the computation of GFrames; the x-axis and complete LRF for SHOT (left)
and for our method (right); MeanCos score (bottom left) and descriptor matching error (bottom right). The latter is encoded as a heat map
growing from white (no matching error) to black (large matching error) via shades of red.




Ours FLARE Ours STED

SHOT Ours STED

Figure 4. Qualitative comparison on a pair of point clouds from the Angel subset. The point-wise matching error (shown on a sparse set of
points for visualization purposes) is encoded as a heatmap, growing from white to dark red. The remaining regions of the point clouds are
visualized in blue. The error is computed as the Euclidean distance between the matched points and the ground truth correspondence.
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Figure 5. Correspondence results on the deformable centaur class
from TOSCA [1].



