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This PDF presents:

1. Per-class statistics for the segmentation application described in the main paper.

2. Full architectural details of each encoder and decoder in our framework.

3. A pointer to visualizations of translations, segmentation, correspondences and interpolation.

1. Per-Class Segmentation Accuracy.

Segmentation and labeling accuracy of each input representation’s Unicode vs its corresponding Solo codes vs
ShapePFCN [2] and WU-Net [3], for 16 shape classes in ShapeNetCore [1].

Category #train/ #labels Shape- WU-Net Point Cloud Point Cloud Voxels Voxels Multi-view
#test PFCN (Joint) (Solo) (Joint) (Solo) (Joint)

Airplane 250/250 4 88.4 90.13 85.87 86.28 87.38 86.85 86.51

Bag 38/38 2 95.5 96.02 91.48 91.41 94.52 94.43 91.95

Bike 101/101 6 87.5 96.61 73.30 58.38 82.59 82.94 74.73

Cap 27/28 2 92 84.77 83.37 87.58 86.48 85.27 83.99

Car 250/250 4 86.6 89.92 82.84 82.40 87.03 87.03 81.55

Chair 250/250 4 83.7 89.44 89.42 89.30 87.96 86.32 89.26

Earphone 34/35 3 82.9 91.82 73.28 69.40 71.22 67.32 71.31

Guitar 250/250 3 89.7 78.53 94.66 94.57 95.65 95.59 94.58

Knife 196/196 2 87.1 95.98 89.43 87.70 90.85 89.74 88.90

Lamp 250/250 4 78.3 90.96 84.25 82.09 78.97 63.61 84.56

Laptop 222/222 2 95.2 77.37 97.43 97.05 97.10 97.45 97.45

Mug 92/92 3 98.1 99.05 98.28 98.45 98.39 98.49 98.28

Pistol 137/138 3 92.2 95.75 95.07 95.17 95.85 96.06 95.35

Rocket 33/33 3 81.5 79.94 69.12 65.28 77.51 78.37 72.27

Skateboard 76/76 3 92.5 94.66 89.10 85.37 91.34 90.19 88.20

Table 250/250 3 92.5 92.91 90.83 91.21 88.74 87.45 89.83

Category average 89.00 90.24 86.73 85.73 88.22 86.69 86.79

Table 1: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore, versus ShapePFCN [2] and WU-Net [3], using the splits from [2].
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2. Network Architectures

We now describe the encoder/decoder architectures for each representation, as used to learn Shape Unicode.
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Figure 1: The voxel encoder takes a 323 voxel grid as input and processes it through a series of 43 convolutional
layers that each output 2 channels. Each layer’s output is concatenated with that of the previous layer, until the
next lowres jump. The number inside each block at the bottom is the stride length used at that layer (same for
each dimension); Low-res jump is done by using a stride length of 2. The figures at the bottom between layers are
the output sizes of the layers. This network outputs a Mean and Standard Deviation using which we subsequently
sample the joint code (Unicode).
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Figure 2: The sampled 1024-dimensional code is rearranged into an 83 grid with 2 channels. This is then processed
through a series of transposed and regular convolutional layers. Each layer’s output is concatenated with that of
the previous layer, until the next high-res jump. Stride lengths are shown as in Figure 1, and stride 2 transposed
convolutions are used for the high-res jump. This network outputs the reconstructed 323 voxel grid.
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Figure 3: The point cloud encoder takes a 1024 × 3 point cloud (1024 points with 3 coordinates each) as input,
which is processed through a series of convolutional layers. The hyper-parameters of each layer are shown above:
the number above each layer is the filter size, the number at the bottom inside each layer is the stride length, and
the one outside is the number of output channels. This network outputs a 1024-D feature for each point, after
which a global max-pooling is performed to obtain a 1024-D intermediate shape code. Then, via fully connected
layers, this network outputs a Mean and Standard Deviation using which the joint code can be sampled.
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Figure 4: The sampled 1024-dimensional code is sent through a series of transposed convolutions with hyper-
parameters indicated above, as in Figure 3. This decoder outputs the 1024 × 3 reconstructed point cloud.
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Figure 5: The multi-view encoder processes 4 input view images, with each processed through a different view
encoder. Each view encoder has the same architecture and hyperparameters, as illustrated above, without any
weights-sharing. The hyperparameters of each layer are shown above: the size on top of each layer is the filter
size, the number at the bottom inside is the stride length and the one outside is the number of output channels.
The size between layers is the image size after the previous layer is applied. Each such view network outputs a
1024-D code, after which we apply max view pooling to obtain a single 1024-D intermediate code. Then, via fully
connected layers, we output a Mean and Standard Deviation using which the joint code can be sampled.
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Figure 6: The sampled joint code is first sent through a fully connected layer that outputs 4 1024-D codes, one
for each view. Each view code is then sent through its own view decoder, with each decoder having the same
architecture and hyper-parameters, but without any weight-sharing. Each view decoder takes in the 1024-D code
of the corresponding view and rearranges it into an 82 image with 2 channels. This is then processed through a
series of transposed and regular convolutions. The hyperparameters of each layer are illustrated in Figure 5. Each
such view decoder outputs a 128 × 128 reconstructed view image.

3. Supplementary Visualizations

We provide visualizations of shape translations, segmentations, correspondences and interpolated generations
in additional supplementary material on the project website for this paper (space constraints prevent us uploading
the full directory of images to the CVPR repository).
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