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Figure 1: The IFI-RNN cell architecture

1. Introduction
In the main submission manuscript, We proposed IFI-

RNN models that use an iterative approach to update hidden
states of RNNs. In this supplementary material, we pro-
vide more detailed architecture specification. Also, we dis-
play more experimental results and comparisons and com-
parisons with other state-of-the-art video deblurring meth-
ods [4, 5, 1].

2. IFI-RNN Model Specification
In Fig. 1, we again show our model cell architecture. In

this section, we describe the specific parameter details. Our
IFI-RNN cell consists of 4 parts: FB, FR, FL, and Fh.

The blur feature extraction part, FB, contains three con-
volutional layers without nonlinear activations. It reduces
the spatial resolution and effectively increases the receptive
field. Given an RGB input size h × w, it produces feature
size 60×h/4×w/4. Then, the extracted feature is concate-
nated with a hidden state of size 20×h/4×w/4, producing
a tensor of shape 80× h/4× w/4.
FR is a sequence of the following 6 residual blocks. It

generates a feature map having the same size as its input,
80×h/4×w/4. Each resblock consists of two convolutional

layers with ReLU activation in between. Note that there
are no batch-normalization layers in the ResBlocks, follow-
ing previous image deblurring [3] and super-resolution [2]
models.

With the calculated feature from FR, Fh and FL are lo-
cated in parallel. Each of them outputs the hidden state and
the latent deblurred frame. Fh has 2 convolutional layers
with a single ResBlock in between. It preserves the resolu-
tion of the feature to generate the hidden state of the next
time-step. On the other hand, FL increases the resolution
and reduces the channels to reconstruct a deblurred frame.
It uses a convolution layer after two up-convolutions. In
Table 1, we explain the exact kernels and outputs of each
layer.

Thus, our single cell method has 0.84M parameters. For
dual cell method, we do not need FL for the 1st cell, as
we estimate the latent image in the 2nd cell only. Hence,
our dual cell method only requires storage for 1.64M pa-
rameters. We compare the model size with state-of-the-art
methods in Table 2.
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Module layer kernel stride output size parameters

input - - 3× h× w -
conv 5× 5 1 20× h× w 1520

FB conv 5× 5 2 40× h/2× w/2 20040
conv 5× 5 2 60× h/4× w/4 60060

hidden state - - 20× h/4× w/4 -
concat - - 80× h/4× w/4 -

FR ResBlock ×6 3× 3 1 80× h/4× w/4 692160
conv 3× 3 1 20× h/4× w/4 14420

Fh ResBlock 3× 3 1 20× h/4× w/4 7240
conv 3× 3 1 20× h/4× w/4 3620

up-conv 3× 3 2 40× h/2× w/2 28840
FL up-conv 3× 3 2 20× h× w 7220

conv 5× 5 1 3× h× w 1503

Table 1: Our IFI-RNN cell architecture details. Each component details are shown. FB, FR, FL, and Fh each has 0.08M,
0.69M, 0.03M, 0.04M parameters, respectively. There are total 0.84M parameters in our single cell model.

Model # parameters Storage (MB)
DBN [4] 15.3M 58.4
RDN [5] 16.4M 62.6
OVD [1] 0.90M 3.4

IFI-RNN (single cell) 0.84M 3.2
IFI-RNN (dual cell) 1.64M 6.2

Table 2: Model size comparison with other deep learning
based methods. For RDN, we refer to the model and source
code provided by the authors of [5], which is different from
the paper. In the main paper and this supplementary ma-
terial, the comparisons are consistently done with the pro-
vided model.

3. More Visual Comparisons
In this section, we provide more visual comparisons of

deblurred results. We used real blurry videos from YouTube
and captured by ourselves. In many examples, our IFI-RNN
shows sharper reconstruction results especially on the fine
textured area. We notice better reconstructed faces in Fig. 2,
3, 5, 6. Also, our method shows lesser artifact in recover-
ing more easily readable text in Fig. 2, 4, 5. Fine-grained
textures are more recognizable in Fig. 3, 7.
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(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 2: Deblurring results of real video.

(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 3: Deblurring results of real video.



(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 4: Deblurring results of real video.

(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 5: Deblurring results of real video.



(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 6: Deblurring results of real video.

(a) Blur (b) Deblurred (Ours)

(c) Blur (d) RDN [5] (e) OVD [1] (f) DBN+OF [4] (g) IFI-RNN(C2H3-reg)

Figure 7: Deblurring results of real video.


