
Fast Neural Architecture Search of Compact Semantic Segmentation Models

via Auxiliary Cells

Vladimir Nekrasov∗ Hao Chen∗ Chunhua Shen Ian Reid

The University of Adelaide, Australia

E-mail: {vladimir.nekrasov, hao.chen01, chunhua.shen, ian.reid}@adelaide.edu.au

Appendix A: Search Space

Decoder connectivity structure

Our fully-convolutional networks follow the encoder-

decoder design paradigm. In particular, in place of the

encoder we rely on an existing image classifier - here,

MobileNet-v2 [8]. The decoder has access to 4 layers from

the encoder with varying dimensions. To form connections

inside the decoder part, we i.) first sample a pair of in-

dices out of 4 possible choices with replacement, ii.) apply

the same set of operations (cell) on each sample index, iii.)

sum up the outputs (Fig. 1), and iv.) add the resultant layer

into the sampling pool. In total, we repeat this process 3
times. Finally, all non-sampled summation outputs are con-

catenated, before being fed into a single 1 × 1 convolution

to reduce the number of channels followed by the final clas-

sification layer.

cell

cellx2

x1
y

Figure 1 – Block structure of the decoder. The same cell operation is

applied to two different layers specified by the connectivity configura-

tion. If the two features have different size, the smaller one is scaled up

via bilinear upsampling to match the larger one.

Cell structure

The cell structure is similarly generated via sampling a

set of operations and corresponding indices. Nevertheless,

there are several notable differences:

1. The operation at each position can vary;

2. A single operation is applied to the input without any

aggregation operator;

3. After that, two indices and two operations are be-

ing sampled with replacement, with the corresponding

outputs being summed up (this is repeated 3 times);

∗Equal contribution.

4. The outputs of each operation along with their summa-

tion layer are added into the sampling pool.

An example of the cell structure with its complete search

space is illustrated in Fig. 2.

op1x
op2

op3

op4

op5

op6

op7
y

0 1
2

3
4

5

6

8

7
9

Figure 2 – Example cell structure of the decoder. The digit at the upper

left corner of each operator is the index of the intermediate features. The

cell is designed to utilize these features by skip connections. Except

the first operator, other operators can be connected from any previous

outputs. The solid black lines indicate the used paths and dashed grey

lines are other unused possible paths. The cell configuration to generate

the above cell is [op1, [1, 0, op2, op3], [4, 3, op4, op5], [2, 0, op6, op7]].

Architecture description

We use a list of integers to encode the architecture found

by the controller, corresponding to the output sequence of

the RNN. Specifically, the list describes the connectivity

structure and the cell configuration. For example, the fol-

lowing connectivity structure [[c1, c2], [c3, c4], [c5, c6]] con-

tains three pairs of digits, indicating the input index ck of a

corresponding layer in the sampling pool. The cell con-

figuration, [o1, [i2, i3, o2, o3], [i4, i5, o4, o5], [i6, i7, o6, o7],
comprises the first operation o1 followed by three cell

branches with the operation oj applied on the index ij .

We provide the description of operations in Table 1, and

visualise the discovered structures in Fig. 3 (arch0), Fig. 4

(arch1), and Fig. 5 (arch2). Note that inside the cell only

the final summation operator is displayed as intermediate

summations would lead to identical structures.

1



Index Abbreviation Description

0 conv1x1 conv 1×1
1 conv3x3 conv 3×3
2 sep3x3 separable conv 3×3
3 sep5x5 separable conv 5×5
4 gap global average pooling fol-

lowed by upsampling and conv

1×1
5 conv3x3 rate 3 conv 3×3 with dilation rate 3
6 conv3x3 rate 12 conv 3×3 with dilation rate 12
7 sep3x3 rate 3 separable conv 3×3 with dila-

tion rate 3
8 sep5x5 rate 6 separable conv 5×5 with dila-

tion rate 6
9 skip skip-connection

10 zero zero-operation that effectively

nullifies the path

Table 1 – Operation indices and abbreviations used to describe the cell

configuration.

cell

cell

cell

cell

concat

y

conv1x1

x

sep5x5 
rate 6 

conv3x3 

sep5x5 
rate 6 

conv3x3 
rate 3 

gap 

y

Decoder Structure Cell Structure

conv1x1

conv1x1

conv1x1

blo
ck

 0

blo
ck

 1

blo
ck

 2

blo
ck

 3

cell

cell
sep5x5 
rate 6 

sep3x3 

Figure 3 – arch0: [[[3, 3], [3, 2], [3, 0]], [8, [0, 0, 5, 2], [0, 2, 8, 8], [0, 5, 1, 4]]]

conv1x1

conv1x1

conv1x1

cell

cell

cell

cell

cell

cell

concat

yconv1x1

x

conv3x3 
rate 12 

conv3x3 

sep3x3 

sep3x3 

sep5x5 

sep5x5 
rate 6 

conv3x3 
rate 12 

y

Decoder Structure Cell Structure

blo
ck

 1

blo
ck

 2

blo
ck

 3

Figure 4 – arch1: [[[2, 3], [3, 1], [4, 4]], [2, [1, 0, 3, 6], [0, 1, 2, 8], [2, 0, 6, 1]]]

cell

cell

cell

cell

concat

y

conv1x1
x

conv3x3 
rate 3 

gap 

conv3x3 

conv3x3 

y

Decoder Structure Cell Structure

conv1x1

conv1x1

conv1x1

blo
ck

 1

blo
ck

 2

blo
ck

 3

conv1x1 

cell

cell

conv3x3 
rate 3 

conv1x1 

Figure 5 – arch2: [[[1, 3], [4, 3], [2, 2]], [5, [0, 0, 4, 1], [3, 2, 0, 1], [5, 6, 5, 0]]]

Appendix B: Experimental results

Semantic Segmentation

We start training with the learning rates of 1e-3 and 3e-3
- for the encoder and the decoder, respectively. The en-

coder weights are updated using SGD with the momen-

tum value of 0.9, whereas for the decoder part we rely on

Adam [3] with default parameters of β1=0.9, β2=0.99 and

ǫ=0.001. We exploit the batch size of 64, evenly divided

over two 1080Ti GPU cards. Each image in the batch is

randomly scaled in the range of [0.5, 2.0], randomly mir-

rored, before being randomly cropped and padded to the

size of 450×450. During training, in order to calculate the

loss term, we upsample the logits to the size of the target

mask.

In addition to the results presented in the main text, we

provide per-class intersection-over-union values across the

models in Table 2.

Pose estimation

For pose estimation, we crop the human instance with

fixed aspect ratios, 1:1 for MPII [1] and 3:4 for COCO [5].

Following Xiao et al. [9], the bounding box is further re-

sized such that the longer side is equal to 256. For MPII,

±25% scale, ±30 degree rotation and random flip are used

for data augmentation. The scale and rotation factors for

COCO are ±30% and ±40 degrees, respectively. We gen-

erate keypoint heatmaps of output stride 4 with Gaussian

distribution with σ = 2. The MobileNet-v2 encoder is ini-

tialised from ImageNet. We use the Adam optimiser with

the base learning rate of 1e−3, and reduce it by 10 after

epochs 90 and 120. The training terminates at the epoch

140. We use the batch size of 128 evenly split between two

1080Ti GPU cards.

We provide detailed quantitative results on MPII in Ta-

ble 3 and COCO in Table 4 along with a few qualitative

examples on Fig. 6. The discovered architectures are able

to infer correctly the location of the majority of keypoints

(rows 1, 2, 4, 5) while failing on a more difficult input image

along with other models (row 3).

Depth estimation

For depth estimation, we start training with the learning

rates of 1e-3 and 7e-3 - for the encoder and the decoder, re-

spectively. For both we use SGD with the momentum value

of 0.9, and anneal the learning rates via the ‘Poly’ sched-

ule: lr ∗ (1 −
epoch

400
)0.9. The training is stopped after 300

epochs. We exploit the batch size of 32, evenly divided over

two 1080Ti GPU cards. Each image in the batch is ran-

domly scaled in the range of [0.5, 2.0], randomly mirrored,

before being randomly cropped and padded to the size of

500×500. We upsample the logits to the size of the target

mask and use the inverse Huber loss [4] for optimisation,

ignoring pixels with missing depth measurements.

We visualise qualitative results on the validation set in

Fig. 7.

2



Model bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DeepLab-v3 [8] 0.94 0.873 0.416 0.849 0.647 0.753 0.937 0.86 0.904 0.391 0.893 0.564 0.847 0.892 0.831 0.844 0.578 0.859 0.525 0.852 0.677 0.759

RefineNet-LW [7] 0.942 0.895 0.594 0.872 0.761 0.669 0.912 0.85 0.876 0.383 0.801 0.605 0.804 0.886 0.835 0.854 0.603 0.843 0.479 0.834 0.703 0.762

Ours (arch0) 0.947 0.885 0.558 0.885 0.748 0.74 0.944 0.868 0.898 0.429 0.863 0.604 0.846 0.842 0.866 0.86 0.592 0.869 0.593 0.875 0.669 0.780

Ours (arch1) 0.944 0.888 0.615 0.866 0.781 0.733 0.933 0.865 0.894 0.394 0.828 0.603 0.833 0.848 0.854 0.855 0.568 0.829 0.555 0.85 0.662 0.771

Ours (arch2) 0.947 0.873 0.589 0.887 0.753 0.75 0.943 0.885 0.895 0.372 0.829 0.635 0.845 0.832 0.867 0.866 0.555 0.843 0.537 0.851 0.671 0.773

Table 2 – Per-class intersection-over-union on the validation set of PASCAL VOC.

Model Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

DeepLab-v3+ [2] 96.180 94.735 86.859 81.037 87.312 81.281 76.121 86.609 31.735

ResNet-50 [9] 96.351 95.329 88.989 83.176 88.420 83.960 79.594 88.532 33.911

Ours (arch0) 95.873 94.378 86.296 80.195 87.139 81.160 75.885 86.526 31.435

Ours (arch1) 96.317 94.548 86.501 80.932 87.242 81.583 77.374 86.971 31.951

Ours (arch2) 96.146 94.769 87.097 80.574 87.848 81.382 77.586 87.119 31.782

Table 3 – Per-keypoint pose estimation results on the validation set of MPII.

GT arch0 arch1 arch2 DeepLab-v3+ ResNet-50 [9]

Figure 6 – Inference results of our models (arch0, arch1, arch2) on validation set of MPII, along with that of DeepLab-v3+-MobileNet-v2 and ResNet-

50 [9].

Appendix C: JetsonTX2 runtime

During our experiments we observed a significant differ-

ence between models’ runtime on JetsonTX2 and 1080Ti.

To better understand it, we additionally measured runtime

of each discovered architecture together with Light-Weight

RefineNet [7] varying the input resolution.

As evident from Fig. 8, the models with a larger num-

ber of floating point operations (i.e., Arch0 and RF-LW)

do not scale well with the input resolution. The effect

is even more pronounced on JetsonTX2, as been indepen-

dently confirmed by an NVIDIA employer in a private con-

versation.

3



Model AP AP50 AP75 APm APl AR

DeepLab-v3+ [2] 0.668 0.894 0.740 0.641 0.707 0.700

ResNet-50 [9] 0.704 0.886 0.783 0.671 0.772 0.763

Ours (arch0) 0.658 0.894 0.730 0.631 0.701 0.691

Ours (arch1) 0.659 0.884 0.729 0.633 0.698 0.694

Ours (arch2) 0.659 0.890 0.729 0.631 0.700 0.693

Table 4 – Pose estimation results on the validation set of COCO2017. We report average precision (AP) and average recall (AR). AP50 and AP75 stand

for average precision computed with the object keypoint similarity (OKS) values of 0.5 and 0.75, respectively, whereas APm and APl are average

precision metrics as measured at medium and large area ranges.

Image GT arch0 arch1 arch2 RF-LW [6]

Figure 7 – Our depth estimation qualitative results on NYUDv2, along with that of Joint Light-Weight RefineNet [6]. Dark-blue pixels in ground truth

are pixels with missing depth measurements.

30

50

70

90

110

130

150

64x64 128x128 256x256 384x384 512x512
Input Resolution

R
u

n
ti
m

e
, 

m
s

Arch0 Arch1 Arch2 RF−LW

(a) JetsonTX2

5

10

15

64x64 128x128 256x256 384x384 512x512
Input Resolution

R
u

n
ti
m

e
, 

m
s

Arch0 Arch1 Arch2 RF−LW

(b) 1080Ti

Figure 8 – Models’ runtime on JetsonTX2 (a) and 1080Ti (b). We visualise mean together with standard deviation values over 100 passes of each model.

4



References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2014.

2
[2] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proc. Eur. Conf. Comp. Vis.,

2018. 3, 4
[3] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv: Comp. Res. Repository, abs/1412.6980,

2014. 2
[4] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and

N. Navab. Deeper depth prediction with fully convolutional

residual networks. In Proc. Int. Conf. 3D Vision, 2016. 2
[5] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-

mon objects in context. In Proc. Eur. Conf. Comp. Vis., 2014.

2
[6] V. Nekrasov, T. Dharmasiri, A. Spek, T. Drummond, C. Shen,

and I. D. Reid. Real-time joint semantic segmentation and

depth estimation using asymmetric annotations. arXiv: Comp.

Res. Repository, abs/1809.04766, 2018. 4
[7] V. Nekrasov, C. Shen, and I. D. Reid. Light-weight refinenet

for real-time semantic segmentation. In Proc. British Machine

Vis. Conf., 2018. 3
[8] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and

L. Chen. Inverted residuals and linear bottlenecks: Mobile

networks for classification, detection and segmentation. Proc.

IEEE Conf. Comp. Vis. Patt. Recogn., 2018. 1, 3
[9] B. Xiao, H. Wu, and Y. Wei. Simple baselines for human pose

estimation and tracking. In Proc. Eur. Conf. Comp. Vis., 2018.

2, 3, 4

5


