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2. Data Generation.

ASKNAV dataset. We partition all object instances into

buckets where instances in the same bucket share the same

environment, containing-room label, and object label. For

each bucket, an end-goal is constructed as “Find [O] in [R]”,

where [O] is replaced with “a/an [object label]” (if singular)

or “[object label]” (if plural), and [R] is replaced with “the

[room label]” (if there is one room of the requested label) or

“one of the pluralize([room label])”1 (if there are mul-

tiple rooms of the requested label). We define the delegate

viewpoint of an object as the closest viewpoint that is in

the same room. To avoid annotation mistakes in the Mat-

terport3D dataset, we ignore object instances that do not lie

in the bounding boxes of their rooms. Goal viewpoints of

an end-goal are delegate viewpoints of all object instances

in the corresponding bucket. All viewpoints in the envi-

ronment are candidates for the start viewpoint. We exclude

candidates that are not reachable from any goal viewpoint

and sample from the remaining candidates at most five start

viewpoints per room. The initial heading angle is a random

multiple of π
6

(less than 2π) and the initial elevation angle

is always zero.

Each data point is defined as a tuple (environment, start

pose, goal viewpoints, end-goal). For each data point, we

run the navigation teacher to obtain the sequences of actions

that take the agent from the start viewpoint to the goal view-

points. Note that executing those sequences of actions may

not necessarily result in the agent facing the target objects

1We use https://github.com/jazzband/inflect to check

for plurality and perform pluralization.

Algorithm 1 Data sampling procedure.

1: Input: a set of buckets B = {bi} where each bucket contains

valid data points. N is the maximum number of elements to

sample from each bucket (N = 10 for ASKNAV, N = 20 for

NOROOM).

2: Output: a dataset D containing no less than 5000 data points.

3: Initialize D = ∅.
4: while |D| < 5000 and B 6= ∅ do

5: Randomly shuffle elements of B.

6: Mark all environments as ‘not sampled’.

7: for bucket b in B do

8: e← environment of b.

9: if e was ‘not sampled’ then

10: s is a random sample of at most N elements of b.

11: D ← D ∪ s

12: Remove b from B.

13: Mark e as ‘already sampled’.

14: end if

15: end for

16: end while

in the end. We filter data points whose start viewpoints are

adjacent to one of the goal viewpoints on the environment

graph, or that require fewer than 5 or more than 25 actions

to reach one of the goal viewpoints. We accumulate valid

data points in all seen environments and sample a fraction

to construct the seen sets. Algorithm 1 describes the sam-

pling procedure. The remaining data points generated from

the training environments form the training set. Similarly,

the unseen sets are samples of data points in the unseen en-

vironments. We finally remove examples in the seen sets

whose environments do not appear in the training set.

Figures 1, 3, 2, 4 offer more insights into the ASKNAV

dataset. Most common target objects are associated with

many instances in a house (e.g., picture, table, chair, cur-

tain). Goal viewpoints mostly lie in rooms that contain

many objects (e.g., bedroom, kitchen, living room, bath-

room), whereas start viewpoints tend to be in the hallway

because it is spacious and thus includes numerous view-

points. About 85% of paths require at least ten actions to

reach the goal viewpoints.
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(a) Train
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(b) Test seen
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(c) Test unseen

Figure 1: Top 20 most common objects in the ASKNAV dataset.
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(b) Test seen
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(c) Test unseen

Figure 2: Top 20 most common start rooms in the ASKNAV dataset.

0

5

10

15

be
dr

oo
m

ki
tc

he
n

ba
th

ro
om

liv
in

g 
ro

om

fa
m

ily
ro

om
of

fic
e

ha
llw

ay

di
ni

ng
 ro

om

en
try

w
ay

la
un

dr
yr

oo
m

lo
un

ge

st
ai

rc
as

e

cl
os

et

ba
lc

on
y

m
ee

tin
gr

oo
m

w
or

ko
ut

 ro
om

tv
 ro

om

re
cr

ea
tio

n 
ro

om

ut
ili

ty
ro

om
to

ile
t

P
er

ce
n

ta
g

e 
(%

)

(a) Train

0

5

10

15

be
dr

oo
m

ba
th

ro
om

liv
in

g 
ro

om

ki
tc

he
n

fa
m

ily
ro

om
of

fic
e

ha
llw

ay

di
ni

ng
 ro

om

lo
un

ge

en
try

w
ay

m
ee

tin
gr

oo
m
cl

os
et sp

a

st
ai

rc
as

e

w
or

ko
ut

 ro
om

tv
 ro

om

la
un

dr
yr

oo
m

re
cr

ea
tio

n 
ro

om

ba
lc

on
y

ut
ili

ty
ro

om

P
er

ce
n

ta
g

e 
(%

)

(b) Test seen

0

5

10

15

be
dr

oo
m

liv
in

g 
ro

om

ki
tc

he
n

ba
th

ro
om

fa
m

ily
ro

om
of

fic
e

ha
llw

ay

di
ni

ng
 ro

om

st
ai

rc
as

e

lo
un

ge

en
try

w
ay

cl
os

et

m
ee

tin
gr

oo
m

la
un

dr
yr

oo
m sp

a

re
cr

ea
tio

n 
ro

om

ga
ra

ge

w
or

ko
ut

 ro
om

to
ile

t

ba
lc

on
y

P
er

ce
n

ta
g

e 
(%

)

(c) Test unseen

Figure 3: Top 20 most common goal rooms in the ASKNAV dataset.
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(c) Test unseen

Figure 4: Distribution of path lengths in the ASKNAV

dataset. Paths are computed by the shortest-path navigation

teacher.

Split Number of data points Number of goals

Train 78,011 136,835

Dev seen 5,018 9,966

Dev unseen 5,003 9,318

Test seen 5,014 9,733

Test unseen 5,010 10,148

Table 1: NOROOM splits.

NOROOM dataset. The NOROOM data is generated using

a similar procedure described above. However, since room

types are not provided, each bucket is labeled with only the

environment and the object label. End-goals have the form

“Find [O]” instead of “Find [O] in [R]”. To ensure that the

number of goals of this dataset is comparable to that of the

ASKNAV dataset, we sample at most 12 start viewpoints per

object for each bucket (we sample five for ASKNAV). Table

1 summarizes the NOROOM dataset splits.

3. Time budget

We set the help-request budget B proportional to the

time budget T̂ , which is the (approximate) number of ac-

tions required to reach the goal viewpoints. During training,

for each data point, we set T̂ to be the rounded average num-

ber of actions needed to move the agent along the shortest

path from the start viewpoint to the goal viewpoints. During

evaluation, because the shortest path needs to be unknown

to the agent, we compute T̂ based on the approximate num-

ber of actions to go optimally from the room type of the

start viewpoint to the room type of the goal viewpoints2.

This quantity is estimated using the training set.

Concretely, suppose we evaluate the agent on a data

point d with starting viewpoint xstart
d and goal viewpoints

{xend
d,i}. We define S as the multiset set of numbers of ac-

tions of training trajectories whose start and goal room types

2For the NOROOM dataset, we compute T̂ based on the approximate

number of actions to go from the start room type to the object type.

match those of d

S = {TRAJLEN
(

x
start
d′ , {xend

d′,i′}
)

: d′ ∈ D, (1)

r
(

x
start
d′

)

= r
(

x
start
d

)

, r
(

x
end
d′,i

)

= r
(

x
end
d,i

)

} (2)

where TRAJLEN(., .) returns the number of actions to move

along the shortest path from a start viewpoint to a set of goal

viewpoints, r(.) returns the room type of a viewpoint, and

D is the training set.

Next, we calculate the 95% upper confidence bound of

the mean number of actions

T =

{

min(cupper, Lmax), if |S| > 0

Lmax, if |S| = 0
(3)

cupper = mean(S) + 1.95 · stdErr(S)

mean(.) and stdErr(.) return the mean and standard error of

a multiset, respectively, and Lmax is a pre-defined constant.

We then run the agent for T̂ = ROUND(T ) steps.

4. Hyperparameters

Table 2 summarizes hyperparameters used in our exper-

iments. The navigation module uses unidirectional single-

layer LSTMs as encoder and decoder. We initialize the en-

coder and the decoder by zero vectors. The help-requesting

module is a feed-forward neural network with one hidden

layer. We train the agent with Adam [1] for 105 itera-

tions, using a learning rate of 10−4 without decaying and

a batch size of 100. We regularize the agent with an L2-

norm weight of 5× 10−4 and a dropout ratio of 0.5. Train-

ing a LEARNED model took about 17 hours on a machine

with a Titan Xp GPU and an Intel 4.00GHz CPU. The help-

requesting ratio (τ ) is 0.4 and the number of actions sug-

gested by the subgoal advisor (k) is 4. The deviation thresh-

old (δ), uncertainty threshold (ǫ), and non-moving threshold

(µ) are 8, 1.0, and 9, respectively. The success radius (d) is

fixed at 2 meters. Both the navigation and help-requesting

modules are trained under the maximum log-likelihood ob-

jective, which maximizes the model-estimated probabilities

of actions suggested by the teacher. We evaluate each agent

with five different random seeds.

5. Qualitative Analysis

We analyze the behavior of an agent that is trained to

learn a help-requesting policy (LEARNED) and is evaluated

with a single random seed. This agent achieves a success

rate of 52.0% on TEST SEEN and 34.5% on TEST UNSEEN.

Overall, the success rate of the agent degrades as the tra-

jectory gets longer (Figure 6). The agent tends to ask for

help early (Figure 5), making more than half of its requests

on the first 20% steps. As time advances, the number of

requests decreases. As expected, the agent tends to request



Hyperparameter Value

Navigation module

LSTM hidden size 512

Number of LSTM layers 1

Word embedding size 256

Navigation action embedding size 32

Help-requesting action embedding size 32

Budget embedding size 16

Image embedding size 2048

Coverage vector size 10

Help-requesting module

Hidden size 512

Number of hidden layers 1

Activation function RELU

Help-requesting teacher

Deviation threshold (δ) 8

Uncertainty threshold (ǫ) 1.0

Non-moving threshold (µ) 9

Number of actions suggested by a subgoal (k) 4

Training

Optimizer Adam

Number of training iterations 105

Learning rate 10−4

Learning rate decay No

Batch size 100

Weight decay (L2-norm regularization) 5× 10−4

Dropout ratio 0.5

Help-requesting ratio (τ ) 0.4

Evaluation

Success radius (d) 2

Number of evaluating random seeds 5

Maximum time budget (Lmax) 25

Table 2: Hyperparameters.

help more early on TEST UNSEEN than on TEST SEEN. As

shown in Figure 7, the most identifiable objects have dis-

tinct invariant features (e.g., sink, curtain), whereas the least

identifiable objects greatly vary in shape and color (e.g.,

fireplace, stool, armchair). Mirrors are the easiest objects

to detect in TEST SEEN, possibly because they are usu-

ally in small rooms (e.g., bathroom) and always reflect the

camera used by the Matterport3D data collector. On TEST

UNSEEN, they are more difficult to find because walking

to the containing-rooms is more challenging. Finding ob-

jects in bathrooms is less challenging because bathrooms

are usually small and have similar layouts and locations

among houses, whereas searching for objects in offices is

difficult because the corresponding environments are usu-

ally workspaces that contain many similar-looking rooms

(Figure 8). Note that these rankings are subject to sampling

biases; for example, they favor objects (or rooms) whose

data points correspond to shorter paths.
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Figure 5: Fraction of help requests made over (normalized)

time.
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Figure 6: Success rate versus number of actions taken by

(a) the navigation teacher and (b) the agent. Error bars are

95% confidence intervals.

Table 3 shows the effectiveness of different subsets of

rules of the help-requesting teacher. Using only rules (b),

(c), (d), which do not require learning because can be di-

rectly computed at test time without ground-truth informa-

tion, is sufficient to obtain a success rate comparable to

that of using all rules. Using rules (a) and (e), which re-

quire ground-truth information about the environment and

the task, slightly improves the success rate over not request-

ing. Rules (a) and (e) are in fact very difficult to learn con-

sidering the small size of the Matterport3D dataset. Unfor-

tunately, at the time this research was conducted, the Mat-

terport3D simulator was one of the largest scale in the small

pool of indoor simulators with real scenes. The effective-

ness of rules (a) and (e) would be more visible in larger-

scale environments like Gibson [2] but it offered limited
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Figure 7: Top five objects with highest and lowest aver-

age success rates in (a) TEST SEEN and (b) TEST UNSEEN.

Numbers in parentheses are object frequencies. Only ob-

jects appearing more than 50 times are included. Error bars

are 95% confidence intervals.
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Figure 8: Top five goal rooms with highest and lowest aver-

age success rates in (a) TEST SEEN and (b) TEST UNSEEN.

Numbers in parentheses are room frequencies. Only rooms

appearing more than 50 times are included. Error bars are

95% confidence intervals.

object annotation. Another reason that makes it challeng-

ing to learn rules (a) and (e) is the training-test condition

mismatch. Near the end of training, the agent has memo-

rized the training examples and rarely makes mistakes. The

agent is thus biased toward not requesting help and gener-

alizes poorly to unseen examples. We nevertheless include

rules (a) and (e) to illustrate that the help-requesting pol-

icy can be taught rules that cannot be executed at test time

by a teacher that has access to ground-truth information.

In general, imitating a help-requesting teacher allows us to

easily transfer domain knowledge from humans to the agent

without restriction on the knowledge and on information re-

quired to imitate it.
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