
A. Supplementary material

This supplementary material contains additional informa-
tion describing our approach. §A.1 discusses the theoretical
properties of our model and proves that the resulting spatial
transformations are diffeomorphic in the continuum. Pos-
sible undesirable effects of the numerical discretization are
not studied or addressed in this work. §B provides some
critical implementation details for the CNN regressing the
local pre-weights of the multi-Gaussian regularizer based
on an input image. Lastly, §C provides details on how the
synthetic data for our synthetic experiments was created.

A.1. Localized multi-Gaussian kernels

Starting from a sum of kernels
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wiGi, we let the co-

efficient wi be spatially varying. In order to ensure the dif-
feomorphic property of deformations, we set the weights
wi(x) = G�small ? !i(x) + "i, where !i(x) are pre-weights
which are convolved with a Gaussian filter with small stan-
dard deviation and "i is a small positive real that acts as a
constant offset parameter6. We have
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where m0 and v0 are the initial momentum and vector field,
respectively. Note that the partition of unity defining the
metric, intervenes in the L

2 scalar product hm0, v0i since,
with "i > 0 a positive offset,
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whose spatial smoothness is enough to guarantee the defor-
mation to be diffeomorphic. Due to the convolution of the
pre-weights, the vector field v0 has a bounded norm in the
space of C

1 vector fields which implies that its flow is a
diffeomorphism at every time. In fact, we have:

Proposition 1. The minimization of the objective functional
(A.1) over a collection of image pairs provides diffeomor-
phic deformations for every pair of images. At every stage
of the optimization procedure, the deformations are guar-
anteed to be diffeomorphic.

6We enforce this small positive constant by clamping the pre-weights
to [✏, 1]. One could also directly integrate this into the weighted linear
softmax definition by clamping to [✏, 1] instead of [0, 1].

Proof. We have the existence of a constant K such that

kfkC1  KkfkHi  KkfkHN , (A.3)

for every f 2 HN .

Denote by � : (I,m) 7! ! the nonlinear map learnt by
the neural network. At every step of the optimization, and
at convergence (for a finite sample of pairs of images, each
pair is denoted by the index j), the functional (A.1) is fi-
nite, which implies that �(Ij ,mj) is pointwisely bounded
on the domain and is in TV , therefore, Gsmall ? wi has a
bounded C

1 norm, as well as
p
wi since wi > "i > 0. In

addition, Ej = hmj ,K(w)mji is also finite and gives an
upper bound for kGN ? (wimj)kHN . Thus, we have
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Therefore, the norm of the velocity field v(x) =p
wi(x)Gi(|x�y|)?pwimj is bounded in C

1 and its flow
is a diffeomorphism.

Also, there is a corresponding variational derivation of the
spatially varying kernel with the square root which is pre-
sented next.

A.1.1 Variational derivation

Let us detail the variational definition of the spatially vary-
ing kernel used in Equation (A.2). Consider
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Using Lagrange multipliers, we get critical points of the
functional
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therefore we get

Livi + wip = 0 8i = 0, . . . , N � 1 , (A.7)

where Li is the inverse of the kernel Gi. Hence, there exists
p such that
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B. Implementation details

CNN initialization/penalty. Directly using the CNN as de-
scribed in §3.1.1 does, in our experience, not lead to sta-
ble estimation results for the weights. Proper initialization
and penalizing undesirable weights is therefore essential.
Specifically, we use the following approaches:

1) Initialization: We initialize all bias terms to zero and
use the initialization scheme from [19] for the convo-
lutional weights. For the last batch normalization layer
we initialize the slope to a small value (0.025) to avoid
massive weight changes at the beginning as the regis-
tration is very sensitive to such changes.

2) Weighted linear softmax input penalty: As the
weighted linear softmax function clamps inputs, val-
ues within the clamping range will no longer produce
gradients. In our experiments this was a highly prob-
lematic behavior as it appeared to lead to cases where
one could not easily recover from poor locations in the
input space to the weighted linear softmax7. Hence,
we penalize the inputs when they are outside the [0, 1]

range as follows:
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Here, clamp
✏,1

clamps values to the interval [✏, 1]. An
✏ > 0 is required as the square root is not differentiable
at zero. This penalty is integrated over all of space and
added to the overall registration energy, i.e.,

RP(z(x)) =

Z
rp(z(x)) dx . (B.2)

We did not experiment with weightings of this term
and simply added it as is. In practice this appeared to
be fine (but may warrant further investigation) as the
term results in zero penalty when the input values to
the weighted linear softmax are not clamped and it is
operating in its linear regime.

3) Weight decay: We use a small weight decay [17] (set
to 1e-5) applied to all the network weights. However,
we did not extensively experiment with this parameter.
Hence, its practical necessity is not clear to us at the
moment. We added it to mitigate possible drift in the
estimated parameters (e.g., very large weights of the
convolutional filters).

7Similarly, if one uses a standard softmax function then exponential
terms may result in very small gradients.

C. Generation of synthetic data

To be able to validate with respect to a known ground truth
we construct synthetic data as follows:

1) We generate concentric circular regions with random
radii and associate different multi-Gaussian weights
to these regions. We associate a fixed multi-Gaussian
weight to the background.

2) We randomly create vector momenta at the borders of
the concentric circles. Specifically, we randomly cre-
ate 10 different sectors and, within each sector, we ran-
domly create either all positive or negative momenta
orthogonal to the circle boundaries. These momenta
are smoothed afterwards.

3) Based on 2), we create a deformation.

4) We randomly create a noisy image of the same dimen-
sion as the image of the concentric circles and smooth
it. We add this smoothed noise image to the concentric
circle image and deform it and its associated weights
given the deformation from 3). The resulting image
is our synthetic source image. We also transform the
image without noise.

5) We repeat steps 2) to 4), starting from the synthetic
source image without noise. The resulting deforma-
tion is applied to the (noisy) synthetic source image to
create the synthetic target image.

These steps are repeated to obtain a desired set of image
pairs.


