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Here we provide implementation details for our ap-
proach and some of the baselines (Section A), and include
qualitative comparison of our approach to ablations, base-
lines and state-of-the-art methods (Section B).

A. Implementation Details

Processing the Visual Feature. First, we detail how we ob-
tain the visual input v̄im in Equation 1 of the main paper. Un-
like image captioning that relies on static features, video de-
scription requires a dynamic multimodal fusion over differ-
ent visual features, such as e.g. stream of RGBs and motion.
In addition to video and image-level features, we introduce
object detections extracted for a subset of frames. Different
features may be temporally misaligned (i.e. extracted over
different sets of frames). We address this as follows. Sup-
pose, a visual feature f extracted from vi is represented as a
sequence of Tf segments: vif = [vif,1, v

i
f,2, ...v

i
f,Tf

] [9, 11].
The previous hidden state him−1 is used to predict tempo-
ral attention [12] over these segments, which then results
in a single feature vector v̂im,f . We concatenate the result-
ing vectors from all features as our final visual input to the
decoder: v̄im = [v̂im,1, v̂

i
m,2, ..., v̂

i
m,f , ...].

Self-Critical Sequence Training. Self-Critical Sequence
Training [6] (SCST)1 is a variant of REINFORCE [10]
where the inference algorithm is used as a baseline. Sup-
pose we have a generator model Gθ with parameters θ; a
complete sequence xs = (xs1, ...x

s
T ) is sampled using the

probability distribution pθ(xst |xs1, ...xst−1) at each time step
t. To reduce the variance during training and explore be-
yond the current best policy, SCST decodes another se-
quence x̂ with the inference algorithm (greedy decoding)
and aims to improve xs over x̂ based on a reward r such as
a CIDER metric [8]. The gradient function for the model is
calculated as:

∇θLGθ (θ) =

T∑
t=1

(r(xs)− r(x̂))∇θ log pθ(x
s
t |xs1:t−1).

(1)
1Our SCST model is based on the implementation of https://

github.com/ruotianluo/self-critical.pytorch

GANs for Captioning. GANs for image captioning [2, 7]
are typically trained with the following procedure due to
their instability in early training stages: 1) pre-train the
generator Gθ optimizing MLE objective, 2) pre-train dis-
criminator Dη by sampling sentences from pre-trained Gθ,
and 3) jointly update Gθ and Dη iteratively with a different
objective for Gθ to deal with non-differentiable sampling.
Cross Entropy loss is used to pre-train Gθ and Dη , where
Dη is trained with negative samples as in Equation 3 of the
main paper, with α = 0.5, β = 0.5. After both Gθ and
Dη have been pre-trained, we follow [1, 4] and jointly train
them using SCST but replacing reward r with an output of
a standard (“single”) discriminator Dη(V, xs), where V is
a given video segment and xs is a sampled description. We
find that it is best to update Gθ for 5 steps for each update
of Dη . The gradient for the above GAN model is:

∇θLGθ (θ) =

T∑
t=1

(Dη(V, xs)−Dη(V, x̂))∇θ log pθ(x
s
t |xs1:t−1).

(2)
Due to instability of adversarial training, we additionally

include cross entropy (CE) loss that ensures that the gen-
erator will explore an output space in a more stable man-
ner and maintain its language model [5]. The final objec-
tive of Gθ is a mixed loss function, a weighted combina-
tion of Cross-Entropy Loss (LCE) optimizing the maximum-
likelihood training objective and Adversarial Loss (LGAN)
with its gradient function defined in Equation 2:

LMIX = λLGAN + (1− λ)LCE, (3)

where we use λ = 0.995. We compare this mixed objective
to not using the CE loss in Table 1 of the main paper.

Adversarial Inference. Suppose each wordwi in a vocabu-
lary of sizeK can be sampled with a probability p(wi). One
can additionally modify the probability distribution during
sampling with a temperature parameter τ :

pτ (wi) =
p(wi)

1/τ∑K
j=1 p(wj)

1/τ
. (4)
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Figure 1: Sampling multi-sentence descriptions with different temperatures. The sentences are sampled from a pre-trained
generator with temperatures {1.0, 0.8, 0.5, 0.2}. Each sentence corresponds to a clip in a video. Note that higher temperatures
tend to lead to more diverse vocabulary with the cost of decreased fluency.

Based on Equation 4, τ = 1 is a default sampling pro-
cedure. Setting τ < 1 shifts the distribution to favor larger
probabilities, making the overall distribution more “peaky”.
We explore parameter τ for both discriminator training, τT ,
and adversarial inference, τI . We obtain more fluent cap-
tions by setting τI < 1 during inference, however we find
it is best to set τT = 1 during discriminator training so that
it learns to distinguish natural and fake descriptions. In our
adversarial inference procedure, we sample K = 100 sen-
tences with τI = 0.2 for each for each video segment. One
can see the effect of different temperatures during inference
in Figure 1.

B. Qualitative Examples

Next, we provide qualitative examples comparing our
Adversarial Inference method to its ablations, other base-
lines and state-of-the-art models.

B.1. Comparison to Model Ablations and GAN

Figure 2 shows a few qualitative examples compar-
ing ground truth descriptions to the ones generated by
the following methods: MLE, SCST (with CIDEr), GAN,
MLE+SingleDis (Single Disc), and our MLE+HybridDis
(Ours). We highlight errors, e.g. objects not present in
video, in bold/red, and repeating phrases in italic/blue.
Overall, our approach leads to more correct, more flu-
ent, and less repetitive multi-sentence descriptions than the
baselines. In (a), our prediction is preferred to all the base-
lines w.r.t. the sentence fluency. While all models recognize
the presence of a baby and a person eating an ice cream,
the baselines fail to describe the scene in a coherent way,

but our approach summarizes the visual information cor-
rectly. Our model also generates more diverse descriptions
specific to what is happening in the video, often mention-
ing more interesting and informative words/phrases, such
as “trimming the hedges” in (b) or “their experience” in (c).
MLE and SCST mention less visually specific information,
and generate more generic descriptions, such as “holding a
piece of wood”. In an attempt to explore diverse phrases,
the single discriminator is more prone to hallucinating non-
existing objects, e.g. “monkey bars” in (b). Finally, our
model outperforms the baselines in terms of lower redun-
dancy across sentences. As seen in (c), our approach de-
livers more diverse content for each clip, while all others
over-report “speaking/talking to the camera”, a very com-
mon phrase in the dataset.

We provide additional examples comparing our ap-
proach to SCST and GAN in Figure 3, further illustrating
how adversarial inference improves over adversarial train-
ing in terms of correctness and fluency. Again, our approach
leads to mentioning important concepts, such as e.g. “tai
chi”. SCST results in ungrammatical sentence endings (e.g.
“a game of”, “begins to the camera”).

We also show the effect of our Pairwise Discriminator
in Figure 4. As we see, an additional consistency score be-
tween sentences helps us obtain less redundant and some-
times more correct predictions (e.g. in (a) the hybrid w/o
pair never mentions dropping the weights).

B.2. Comparison to State-of-the-Art

Figure 5 provides a comparison of descriptions obtained
by our approach to three recent video description models
(VideoStory [3], Transformer [13], MoveForwardTell [11]).
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Figure 2: Comparison of our approach to MLE baseline, SCST, GAN, and Adversarial Inference with Single Discriminator.
Red/bold indicates content errors, blue/italic indicates repetitive patterns.

While the state-of-the-art models are often able to capture
the relevant visual information, they are still prone to is-
sues like repetition, lack of diverse and precise content as
well as content errors. In particular, VideoStory and Move-
ForwardTell suffer from the dominant language prior and
repeatedly mention “the camera”, making the stories less
informative and specific to the events in the video. Despite
having less repeating contents and high scores in language
metrics, the Transformer model is prone to produce inco-
herent phrases e.g. “a man is a bikini” or “putting sunscreen

on the beach water”, and ungrammatical endings, e.g. “and
a” in (a). On the other hand, our model captures the visual
content more precisely, e.g. in the top example it refers to
the subject as a “girl”, pointing out that the girl is “laying on
a bed”, correctly recognizing “sand castles”, etc. Besides,
unlike prior work, our approach mentions important video
relevant concepts (e.g. “choppy waters”, “rapids”, “afloat”
in (b); “synchronized”, “stepper” in (c)). Overall, we see
more diversity and less repetitiveness, along with more ac-
curate description of video content. We note that there is
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Figure 3: Comparison of our approach to MLE baseline, SCST, and GAN. Red/bold indicates content errors, blue/italic
indicates repetitive patterns.

still a large room for improvement w.r.t. the human ground-
truth descriptions.
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(a)

(b)

Figure 4: Effect of Pairwise Discriminator term in our approach. Red/bold indicates content errors. While both models in a)
are not perfectly aligned with ground truth descriptions, the one without pairwise discriminator keeps repeating lifts a weight
and fails to mention that the man drops the weight. Similarly in b), the model without pairwise discriminator mentions that
man is pushed down the hill twice in a row, while ours avoids generating similar descriptions but more diverse phrases within
the paragraph such as continue riding down the hill and shown sledding down the hill together .
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Figure 5: Comparison of our approach to state-of-the-art video description approaches (VideoStory [3], Transformer [13],
MoveForwardTell [11]). Red/bold indicates content errors, blue/italic indicates repetitive patterns.
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Figure 6: Failure cases of our approach and state-of-the-art video description approaches (VideoStory [3], Transformer [13],
MoveForwardTell [11]). Red/bold indicates content errors, blue/italic indicates repetitive patterns.

B.3. Failure Analysis

This brings us to the last section, where we analyze the
typical failures of our approach. As shown in the previous
examples, our model is not free of errors, e.g. it halluci-

nates an ice cream “cone” (Figure 2 (a)), incorrectly men-
tions “showing off her new york” (Figure 2 (c)), predicts
“man” instead of a woman (Figure 3 (b)) and “woman” in-
stead of a child (Figure 5 (a)) or lifting instead of dropping
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(Figure 4 (a)), etc. It is also still prone to some repetition
(e.g. Figure 3 (a), (b), Figure 5 (a)). Overall, however, our
captions improve over those of the baselines, as supported
by our human evaluation.

We include a few additional failure cases in Figure 6,
showcasing difficult examples from the ActivityNet Cap-
tions dataset. In particular, fine-grained activities that in-
volve small objects are hard, e.g. our model confuses ap-
plying makeup with inserting a contact lens in Figure 6 (a),
incorrectly mentions a “hair dryer” and “scissors” in Fig-
ure 6 (b), and “vegetables” and “potatos” in Figure 6 (c).
The other methods are also struggling on these challenging
videos, by either making errors or lacking detail, showing
that there is still a long way to go towards solving multi-
sentence video description in the wild.
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