
DeepSDF_supplementary.pdf

Supplementary Material
DeepSDF: Learning Continuous Signed Distance Functions

for Shape Representation

Jeong Joon Park Peter Florence Julian Straub Richard Newcombe Steven Lovegrove

A. Overview
This supplementary material provides quantitative and

qualitative experimental results along with extended tech-
nical details that are supplementary to the main paper. We
first describe the shape completion experiment with noisy
depth maps using DeepSDF (Sec. B). We then discuss ar-
chitecture details (Sec. C) along with experiments exploring
characteristics and tradeoffs of the DeepSDF design deci-
sions (Sec. D). In Sec. G we compare auto-decoders with
variational and standard auto-encoders. Further, additional
details on data preparation (Sec. E), training (Sec. F), the
auto-decoder learning scheme (Sec. H), and quantitative
evaluations (Sec. I) are presented, and finally in Sec. J we
provide additional quantitative and qualitative results.

B. Shape Completion from Noisy Depth Maps
We test the robustness of our shape completion method

by using noisy depth maps as input. Specifically, we
demonstrate the ability to complete shapes given partial
noisy point clouds obtained from consumer depth cameras.
Following [7], we simulate the noise distribution of typi-
cal structure depth sensors, including Kinect V1 by adding
zero-mean Guassian noise to the inverse depth representa-
tion of a ground truth input depth image:

Dnoise =
1

(1/D) +N (0, α2)
, (1)

where α is standard deviation of the normal distribution.
For the experiment, we synthetically generate noisy

depth maps from the ShapeNet [2] plane models using the
same benchmark test set of Dai et al. [3] used in the main
paper. We perturb the depth values using standard deviation
α of 0.01, 0.02, 0.03, and 0.05. Given that the target shapes
are normalized to a unit sphere, one can observe that the
inserted noise level is significant (Fig. 1).

The shape completion results with respect to added
Guassian noise on the input synthetic depth maps are shown
in Fig. 1. The Chamfer distance of the inferred shape ver-
sus the ground truth shape deteriorates approximately lin-

0.00 0.01 0.02 0.03 0.04 0.05
α , std. dev of inverse-depth Gaussian noise

0

1

2

3

4

5

6

C
h

am
fe

r
D

is
ta

n
ce

raw perturbed depth image

completion, mean

completion, median

Figure 1: Chamfer distance (multiplied by 103) as a function of α,
the standard deviation of inverse-depth Gaussian noise as shown in
Eq. 1, for shape completions on planes from ShapeNet. Green line
describes Chamfer distance between the perturbed depth points
and original depth points, which shows the superlinear increase
with increased noise. Blue and orange show respectively the mean
and median of the shape completion’s Chamfer distance (over a
dataset of 85 plane completions) relative to the ground truth mesh
which deteriorates approximately linearly with increasing stan-
dard deviation of noise. The same DeepSDF model was used for
inference, the only difference is in the noise of the single depth im-
age provided from which to perform shape completion. Example
qualitative resuls are shown in Fig. 2.

early with increasing standard deviation of the noise. Com-
pared to the Chamfer distance between raw perturbed point
cloud and ground truth depth map, which increases super-
linearly with increasing noise level (Fig. 1), the shape com-
pletion quality using DeepSDF degrades much slower, im-
plying that the shape priors encoded in the network play an
important role regularizing the shape reconstruction.

C. Network Architecture

Fig. 4 depicts the overall architecture of DeepSDF. For
all experiments in the main paper we used a network com-

1

(a) No noise (b) α = 0.01 (c) α = 0.02 (d) α = 0.03 (e) α = 0.05

Figure 2: Shape completion results obtained from the partial and noisy input depth maps shown below. Input point clouds are overlaid on
each completion to illustrate the scale of noise in the input.

(a) No noise (b) α = 0.01 (c) α = 0.02 (d) α = 0.03 (e) α = 0.05

Figure 3: Visualization of partial and noisy point-clouds used to test shape completion with DeepSDF. Here, α is the standard deviation
of Gaussian noise in Eq. 1. Corresponding completion results are shown above.

posed of 8 fully connected layers each of which are applied
with weight-normalization, and each intermediate vectors
are processed with RELU activation and 0.2 dropout ex-
cept for the final layer. A skip connection is included at the
fourth layer.

D. DeepSDF Network Design Decisions
In this section, we study system parameter decisions that

affect the accuracy of SDF regression, thereby providing
insight on the tradeoffs and scalability of the proposed al-
gorithm.

D.1. Effect of Network Depth on Regression Accu-
racy

In this experiment we test how the expressive capabil-
ity of DeepSDF varies as a function of the number of lay-
ers. Theoretically, an infinitely deep feed-forward network
should be able to memorize the training data with arbitrary
precision, but in practice this is not true due to finite com-
pute power and the vanishing gradient problem, which lim-
its the depth of the network.

We conduct an experiment where we let DeepSDF mem-
orize SDFs of 500 chairs and inspect the training loss with
varying number of layers. As described in Fig. 4, we find
that applying the input vector (latent vector + xyz query)
both to the first and a middle layer improves training. In-

spired by this, we split the experiment into two cases: 1)
train a regular network without skip connections, 2) train a
network by concatenating the input vector to every 4 layers
(e.g. for 12 layer network the input vector will be concate-
nated to the 4th, and 8th intermediate feature vectors).

Experiment results in Fig. 5 shows that the DeepSDF ar-
chitecture without skip connections gets quickly saturated
at 4 layers while the error keeps decreasing when trained
with latent vector skip connections. Compared to the archi-
tecture we used for the main experiments (8 FC layers), a
network with 16 layers produces significantly smaller train-
ing error, suggesting a possibility of using a deeper network
for higher precision in some application scenarios. Further,
we observe that the test error quickly decrease from four-
layer architecture (9.7) to eight layer one (5.7) and subse-
quently plateaued for deeper architectures. However, this
does not suggest conclusive results on generalization, as we
used the same number of small training data for all archi-
tectures even though a network with more number of pa-
rameters tends to require higher volume of data to avoid
overfitting.

D.2. Effect of Truncation Distance on Regression
Accuracy

We would like to highlight that we can directly use the
Ray Marching algorithm [8] for visualization: since the

2

Latent Vector

(x,y,z)

FC

512

FC

512259

FC

512

FC

512

FC

512

FC

512

FC

512

FC
1

TH
1

Figure 4: DeepSDF architecture used for experiments. Boxes represent vectors while arrows represent operations. The feed-forward
network is composed of 8 fully connected layers, denoted as “FC” on the diagram. Each of the “FC” layers except for the last one is
processed with weight-normalization, ReLU activation and Dropout. We used 256 and 128 dimensional latent vectors for reconstruction
and shape completion experiments, respectively. The latent vector is concatenated, denoted “+”, with the xyz query, making 259 length
vector, and is given as input to the first layer. We find that inserting the latent vector again to the middle layers significantly improves the
learning, denoted as dotted arrow in the diagram: the 259 vector is concatenated with the output of fourth fully connected layer to make a
512 vector. Final SDF value is obtained with hypberbolic tangent non-linear activation denoted as “TH”.

2 4 6 8 10 12 14 16 18 20
Number of FC Layers

0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 S
DF

 L
os

s (
1e

-3
)

Our Used Model

Training Loss by Network Size
Without Skip
With Skip

Figure 5: Regression accuracy (measured by the SDF loss used
in training) as a function of network depth. Without skip con-
nections, we observe a plateau in training loss past 4 layers. With
skip connections, training loss continues to decrease although with
diminishing returns past 12 layers. The model size chosen for
all other experiments, 8 layers, provides a good tradeoff between
speed and accuracy.

trained DeepSDF predicts SDF value at each spatial point,
we may march along each ray by the SDF value at current
position until intersecting a zero-crossing please refer to
[8] for details. To speed up the ray-tracing we may train
DeepSDF with a larger truncation region in exchange for
the regression accuracy.

The truncation distance δ (from Eq. 4 of the manuscript)
controls the extent from the surface over which we expect
the network to learn a metric SDF. Fig. 6 plots the surface
accuracy in terms of Chamfer distance as a function of trun-
cation distance. We observe a moderate decrease in the ac-

curacy of the surface representation as the truncation dis-
tance is increased. A hypothesis for an explanation is that
it becomes more difficult to approximate a larger truncation
region (a strictly larger domain of the function) to the same
absolute accuracy as a smaller truncation region. The ben-
efit, however, of larger truncation regions is that there is a
larger region over which the metric SDF is maintained – in
our application this reduces raycasting time, and there are
other applications as well, such as physics simulation and
robot motion planning for which a larger SDF of shapes
may be valuable. We chose a δ value of 0.01 for all exper-
iments presented in the manuscript, which provides a good
tradeoff between raycasting speed and surface accuracy.

E. Data Preparation Details

For data preparation, we are given a mesh of a shape
to sample spatial points and their SDF values. We begin
by normalizing each shape so that the shape model fits into
a unit sphere with some margin (in practice fit to sphere
radius of 1/1.03). Then, we virtually render the mesh from
100 virtual cameras regularly sampled on the surface of the
unit sphere. Then, we gather the surface points by back-
projecting the depth pixels from the virtual renderings, and
the points’ normals are assigned from the triangle to which
it belongs. Triangle surface orientations are set such that
they are towards the camera. When a triangle is visible from
both orientations, however, the given mesh is not watertight,
making true SDF values hard to calculate, so we discard a
mesh with more than 2% of its triangles being double-sided.
For a valid mesh, we construct a KD-tree for the oriented
surface points.

As stated in the main paper, it is important that we sam-
ple more aggressively near the surface of the mesh as we
want to accurately model the zero-crossings. Specifically,
we sample around 250,000 points randomly on the surface

3

0.2 0.4 0.6 0.8 1.0
δ , Truncation distance

0.05

0.06

0.07

0.08

0.09

0.10

C
h

am
fe

r
D

is
ta

n
ce

(3
0,

00
0

p
oi

n
ts

)

mean

median

Figure 6: Chamfer distance (multiplied by 103) as a function of
δ, the truncation distance, for representing a known small dataset
of 100 cars from ShapeNet dataset [2]. All models were trained
on the same set of SDF samples from these 100 cars. There is
a moderate reduction in the accuracy of the surface, as measured
by the increasing Chamfer distance, as the truncation distance is
increased between 0.05 and 1.0. The bend in the curve at δ = 0.3
is just expected to be due to the stochasticity inherent in training.
Note that (a) due to the tanh() activation in the final layer, 1.0
is the maximum value the model can predict, and (b) the plot is
dependent on the distribution of the samples used during training.

of the mesh, weighted by triangle areas. Then, we perturb
each surface point along all xyz axes with mean-zero Gaus-
sian noise with variance 0.0025 and 0.00025 to generate
two spatial samples per surface point. For around 25,000
points we uniformly sample within the unit sphere. For each
collected spatial samples, we find the nearest surface point
from the KD-tree, measure the distance, and decide the sign
from the dot product between the normal and their vector
difference.

F. Training and Testing Details

For training, we find it important to initialize the latent
vectors quite small, so that similar shapes do not diverge
in the latent vector space – we used N (0, 0.012). Another
crucial point is balancing the positive and negative samples
both for training and testing: for each batch used for gradi-
ent descent, we set half of the SDF point samples positive
and the other half negative.

Learning rate for the decoder parameters was set to be
1e-5 * B, where B is number of shapes in one batch. For
each shape in a batch we randomly subsampled 16384 SDF
samples (out of 500K available points). Learning rate for
the latent vectors was set to be 1e-3. Also, we set the regu-
larization parameter σ = 10−2. We trained our models on
8 Nvidia GPUs approximately for 8 hours for 1000 epochs.

For reconstruction experiments the latent vector size was
set to be 256, and for the shape completion task we used
models with 128 dimensional latent vectors.

G. Comparison with Variational and Standard
Auto-encoders on MNIST

To compare different approaches of learning a latent
code-space for a given datum, we use the MNIST dataset
and compare the variational auto encoder (VAE), the stan-
dard bottleneck auto encoder (AE), and the proposed auto
decoder (AD). As the reconstruction error we use the stan-
dard binary cross-entropy and match the model architec-
tures such that the decoders of the different approaches have
exactly the same structure and hence theoretical capacity.
We show all evaluations for different latent code-space di-
mensions of 2D, 5D and 15D.

For 2D codes the latent spaces learned by the different
methods are visualized in Fig. 7. All code spaces can rea-
sonably represent the different digits. The AD latent space
seems more condensed than the ones from VAE and AE.
For the optimization-based encoding approach we initialize
codes randomly. We show visualizations of such random
samples in Fig. 8. Note that samples from the AD- and
VAE-learned latent code spaces mostly look like real digits,
showing their ability to generate realistic digit images.

We also compare the train and test reconstruction er-
rors for the different methods in Fig. 9. For VAE and AE
we show both the reconstruction error obtained using the
learned encoder and obtained via code optimization using
the learned decoder only (denoted “(V)AE decode”). The
test error for VAE and AE are consistently minimized for
all latent code dimensions. “AE decode ” diverges in all
cases hinting at a learned latent space that is poorly suited
for optimization-based decoding. Optimizing latent codes
using the VAE encoder seems to work better for higher di-
mensional codes. The proposed AD approach works well in
all tested code space dimensions. Although “VAE decode”
has slightly lower test error than AD in 15 dimensions, qual-
itatively the AD’s reconstructions are better as we discuss
next.

In Fig. 10 we show example reconstructions from the
test dataset. When using the learned encoders VAE and
AE produce qualitatively good reconstructions. When using
optimization-based encoding “AE decode” performs poorly
indicating that the latent space has many bad local minima.
While the reconstructions from “VAE decode“ are, for the
most part, qualitatively close to the original, AD’s recon-
structions more closely resemble the actual digit of the test
data. Qualitatively, AD is on par with reconstructions from
end-to-end-trained VAE and AE.

4

(a) Auto Encoder (AE) (b) Variational Auto Encoder (VAE) (c) Auto Decoder (AD)

Figure 7: Comparison of the 2D latent code-space learned by the different methods. Note that large portion of the regular auto-encoder’s
(AE) latent embedding space contains images that do not look like digits. In contrast, both VAE and AD generate smooth and complete
latent space without outstanding artifacts. Best viewed digitally.

(a) AD (b) VAE (c) AE

Figure 8: Visualization of random samples from the latent 2D
(top), 5D (middle), and 15D (bottom) code space on MNIST. Note
that the sampling from regular auto-encoder (AE) suffers from ar-
tifacts. Best viewed digitally.

H. Full Derivation of Auto-decoder-based
DeepSDF Formulation

To derive the auto-decoder-based shape-coded DeepSDF
formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iNi=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (2)

The SDF values can be computed from mesh inputs as de-
tailed in the main paper.

For an auto-decoder, as there is no encoder, each la-
tent code zi is paired with training shape data Xi and
randomly initialized from a zero-mean Gaussian. We use
N (0, 0.0012). The latent vectors {zi}Ni=1 are then jointly

optimized during training along with the decoder parame-
ters θ.

We assume that each shape in the given dataset X =
{Xi}Ni=1 follows the joint distribution of shapes:

pθ(Xi, zi) = pθ(Xi|zi)p(zi) , (3)

where θ parameterizes the data likelihood. For a given θ a
shape code zi can be estimated via Maximum-a-Posterior
(MAP) estimation:

ẑi = arg max
zi

pθ(zi|Xi) = arg max
zi

log pθ(zi|Xi) . (4)

We estimate θ as the parameters that maximizes the poste-
rior across all shapes:

θ̂ = arg max
θ

∑
Xi∈X

max
zi

log pθ(zi|Xi) (5)

= arg max
θ

∑
Xi∈X

max
zi

(log pθ(Xi|zi) + log p(zi)) ,

where the second equality follows from Bayes Law.
For each shape Xi defined via point and SDF samples

(xj , sj) as defined in Eq. 2 we make a conditional indepen-
dence assumption given the code zi to arrive at the decom-
position of the posterior pθ(Xi|zi):

pθ(Xi|zi) =
∏

(xj ,sj)∈Xi

pθ(sj |zi;xj) . (6)

Note that the individual SDF likelihoods pθ(sj |zi;xj) are
parameterized by the sampling location xj .

To derive the proposed auto-decoder-based DeepSDF
approach we express the SDF likelihood via a deep feed-
forward network fθ(zi,xj) and, without loss of generality,

5

(a) 2D (b) 5D (c) 15D

Figure 9: Train and test error for different dimensions of the latent code for the different approaches.

(a) AD (b) VAE (c) VAE decode (d) AE (e) AE decode

Figure 10: Reconstructions for 2D (top), 5D (middle), and 15D (bottom) code space on MNIST. For each of the different dimensions we
plot the given test MNIST image and the reconstruction given the inferred latent code.

assume that the likelihood takes the form:

pθ(sj |zi;xj) = exp(−L(fθ(zi,xj), sj)) . (7)

The SDF prediction s̃j = fθ(zi,xj) is represented using
a fully-connected network and L(s̃j , sj) is a loss function
penalizing the deviation of the network prediction from the
actual SDF value sj . One example for the cost function is
the standard L2 loss function which amounts to assuming
Gaussian noise on the SDF values. In practice we use the
clamped L1 cost introduced in the main manuscript.

In the latent shape-code space, we assume the prior dis-
tribution over codes p(zi) to be a zero-mean multivariate-
Gaussian with a spherical covariance σ2I . Note that other
more complex priors could be assumed. This leads to the fi-
nal cost function via Eq. 5 which we jointly minimize with
respect to the network parameters θ and the shape codes
{zi}Ni=1:

arg min
θ,{zi}Ni=1

N∑
i=1

 K∑
j=1

L(fθ(zi,xj), sj) +
1

σ2
||zi||22

 . (8)

At inference time, we are given SDF point samples X of
one underlying shape to estimate the latent code z describ-
ing the shape. Using the MAP formulation from Eq. 4 with
fixed network parameters θ we arrive at:

ẑ = arg min
z

∑
(xj ,sj)∈X

L(fθ(z,xj), sj) +
1

σ2
||z||22, (9)

where 1
σ2 can be used to balance the reconstruction and reg-

ularization term. For additional comments and insights as
well as the practical implementation of the network and its
training refer to the main manuscript.

I. Details on Quantitative Evaluations

I.1. Preparation for Benchmarked Methods

I.1.1 DeepSDF

For quantitative evaluations we converted the DeepSDF
model for a given shape into a mesh by using Marching
Cubes [9] with 5123 resolution. Note that while this was
done for quantitative evaluation as a mesh, many of the
qualitative renderings are instead produced by raycasting
directly against the continuous SDF model, which can avoid
some of the artifacts produced by Marching Cubes at fi-
nite resolution. For all experiments in representing known
or unknown shapes, DeepSDF was trained on ShapeNet
v2, while all shape completion experiments were trained
on ShapeNet v1, to match 3D-EPN. Additional DeepSDF
training details are provided in Sec. F.

I.1.2 OGN

For OGN we trained the provided decoder model
(“shape from id”) for 300,000 steps on the same train set
of cars used for DeepSDF. To compute the point-based

6

metrics, we took the pair of both the groundtruth 256-
voxel training data provided by the authors, and the gen-
erated 256-voxel output, and converted both of these into
point clouds of only the surface voxels, with one point for
each of the voxels’ centers. Specifically, surface voxels
were defined as voxels which have at least one of 6 di-
rect (non-diagonal) voxel neighbors unoccupied. A typi-
cal number of vertices in the resulting point clouds is ap-
proximately 80,000, and the points used for evaluation are
randomly sampled from these sets. Additionally, OGN was
trained based on ShapeNet v1, while AtlasNet was trained
on ShapeNet v2. To adjust for the scale difference, we con-
verted OGN point clouds into ShapeNet v2 scale for each
model.

I.1.3 AtlasNet

Since the provided pretrained AtlasNet models were trained
multi-class, we instead trained separate AtlasNet models for
each evaluation. Each model was trained with the avail-
able code by the authors with all default parameters, except
for the specification of class for each model and matching
train/test splits with those used for DeepSDF. The quality of
the models produced from these trainings appear compara-
ble to those in the original paper.

Of note, we realized that AtlasNet’s own computation
of its training and evaluation metric, Chamfer distance, had
the limitation that only the vertices of the generated mesh
were used for the evaluation. This leaves the triangles of
the mesh unconstrained in that they can connect across what
are supposed to be holes in the shape, and this would not be
reflected in the metric. Our evaluation of meshes produced
by AtlasNet instead samples evenly from the mesh surface,
i.e. each triangle in the mesh is weighted by its surface area,
and points are sampled from the triangle faces.

I.1.4 3D-EPN

We used the provided shape completion inference results for
3D-EPN, which is in voxelized distance function format.
We subsequently extracted the isosurface using MATLAB
as described in the paper to obtain the final mesh.

I.2. Metrics

The first two metrics, Chamfer and Earth Mover’s, are
easily applicable to points, meshes (by sampling points
from the surface) and voxels (by sampling surface voxels
and treating their centers as points). When meshes are
available, we also can compute metrics suited particularly
for meshes: mesh accuracy, mesh completion, and mesh
cosine similarity.

Chamfer distance is a popular metric for evaluating
shapes, perhaps due to its simplicity [5]. Given two point

sets S1 and S2, the metric is simply the sum of the nearest-
neighbor distances for each point to the nearest point in the
other point set.

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22

Note that while sometimes the metric is only defined
one-way (i.e., just

∑
x∈S1

min
y∈S2

||x − y||22) and this is not

symmetric, the sum of both directions, as defined above, is
symmetric: dCD(S1, S2) = dCD(S2, S1). Note also that
the metric is not technically a valid distance function since
it does not satisfy the triangle inequality, but is commonly
used as a psuedo distance function [5]. In all of our experi-
ments we report the Chamfer distance for 30,000 points for
both |S1| and |S2|, which can be efficiently computed by
use of a KD-tree, and akin to prior work [6] we normalize
by the number of points: we report dCD(S1,S2)

30,000 .

Earth Mover’s distance [10], also known as the Wasser-
stein distance, is another popular metric for measuring the
difference between two discrete distributions. Unlike the
Chamfer distance, which does not require any constraints
on the correspondences between evaluated points, for the
Earth Mover’s distance a bijection φ : S1 → S2, i.e. a
one-to-one correspondence, is formed. Formally, for two
point sets S1 and S2 of equal size |S1| = |S2|, the metric is
defined via the optimal bijection [5]:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2

Although the metric is commonly approximated in the
deep learning literature [5] by distributed approximation
schemes [1] for speed during training, we compute the met-
ric accurately for evaluation using a more modest number
of point samples (500) using [4].

In practice the intuitive, important difference between
the Chamfer and Earth Mover’s metrics is that the Earth
Mover’s metric more favors distributions of points that are
similarly evenly distributed as the ground truth distribution.
A low Chamfer distance may be achieved by assigning just
one point in S2 to a cluster of points in S1, but to achieve
a low Earth Mover’s distance, each cluster of points in S1

requires a comparably sized cluster of points in S2.

Mesh accuracy, as defined in [11], is the minimum
distance d such that 90% of generated points are within d
of the ground truth mesh. We used 1,000 points sampled
evenly from the generated mesh surface, and computed the
minimum distances to the full ground truth mesh. To clar-
ify, the distance is computed to the closest point on any face
of the mesh, not just the vertices. Note that unlike Chamfer

7

and Earth Mover’s metrics which require sampling of points
from both meshes, with this metric the entire mesh for the
ground truth is used – accordingly this metric has lower
variance than for example Chamfer distance computed with
only 1,000 points from each mesh. Note also that mesh
accuracy does not measure how complete the generated
mesh is – a low (good) mesh accuracy can be achieved
by only generating one small portion of the ground truth
mesh, ignoring the rest. Accordingly, it is ideal to pair
mesh accuracy with the following metric, mesh completion.

Mesh completion, also as defined in [11], is the fraction
of points sampled from the ground truth mesh that are
within some distance ∆ (a parameter of the metric) to the
generated mesh. We used ∆ = 0.01, which well measured
the differences in mesh completion between the different
methods. With this metric the full generated mesh is used,
and points (we used 1,000) are sampled from the ground
truth mesh (mesh accuracy is vice versa). Ideal mesh
completion is 1.0, minimum is 0.0.

Mesh cosine similarity is a metric we introduce to mea-
sure the accuracy of mesh normals. We define the metric
as the mean cosine similarity between the normals of points
sampled from the ground truth mesh, and the normals of the
nearest faces of the generated mesh. More precisely, given
the generated mesh Mgen and a set of points with normals
Sgt sampled from the ground truth mesh, for each point xi
in Sgt we look up the closest face Fi in Mgen, and then
compute the average cosine similarity between the normals
associated with xi and Fi,

Cos. sim(Mgen, Sgt) =
1

|Sgt|
∑
xi∈Sgt

n̂Fi · n̂xi ,

where each n̂ ∈ R3 is a unit-norm normal vector. We
use |Sgt| = 2, 500 and in order to allow for [6] which
does not provide oriented normals, we compute the min(·)
over both the generated mesh normal and its flipped normal:
min(n̂Fi

· n̂xi
,−n̂Fi

· n̂xi
). Ideal cosine similarity is 1.0,

minimum (given the allowed flip of the normal) is 0.0.

J. Additional Results
J.1. Representing Unseen Objects

We provide additional results on representing test ob-
jects with trained DeepSDF (Fig. 11, 12). We provide ad-
ditional data with the additional metrics, mesh completion
and mesh cosine similarity, for the comparison of methods
contained in the manuscript (Tab. 1). The success of this
task for DeepSDF implies that 1) high quality shapes sim-
ilar to the test shapes exist in the embedding space, and 2)
the codes for the shapes can be found through simple gradi-
ent descent.

Mesh comp., mean chair plane table lamp sofa
AtlasNet-Sph. 0.668 0.862 0.755 0.281 0.641
AtlasNet-25 0.723 0.887 0.785 0.528 0.681
DeepSDF 0.947 0.943 0.959 0.877 0.931
Mesh comp., median
AtlasNet-Sph. 0.686 0.930 0.795 0.257 0.666
AtlasNet-25 0.736 0.944 0.825 0.533 0.702
DeepSDF 0.970 0.970 0.982 0.930 0.941
Cosine sim., mean
AtlasNet-Sph. 0.790 0.840 0.826 0.719 0.847
AtlasNet-25 0.797 0.858 0.835 0.725 0.826
DeepSDF 0.896 0.907 0.916 0.862 0.917

Table 1: Comparison of metrics for representing unknown shapes
(U) for various classes of ShapeNet. Mesh completion as defined
in [11] i.e. the fraction of groundtruth sampled points that are
within a ∆ (we used ∆ = 0.01) of the generated mesh, and mean
cosine similarity is of normals for nearest groundtruth-generated
point pairs. Cosine similarity is defined in I.2. Higher is better for
all metrics in this table.

J.2. Shape Completions

Finally we present additional shape completion results
on unperturbed depth images of synthetic ShapeNet dataset
(Fig. 13), demonstrating the quality of the auto-decoder
learning scheme and the new shape representation.

References

[1] D. P. Bertsekas. A distributed asynchronous relaxation algo-
rithm for the assignment problem. In Decision and Control,
1985 24th IEEE Conference on, pages 1703–1704. IEEE,
1985.

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[3] A. Dai, C. Ruizhongtai Qi, and M. Niessner. Shape comple-
tion using 3d-encoder-predictor cnns and shape synthesis. In
CVPR, pages 5868–5877, 2017.

[4] G. Doran. PyEMD: Earth mover’s distance for Python,
2014–. [Online; accessed ¡today¿].

[5] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3d object reconstruction from a single image.

[6] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. Atlasnet: A papier-m\ˆ ach\’e approach to learn-
ing 3d surface generation. arXiv preprint arXiv:1802.05384,
2018.

[7] A. Handa, T. Whelan, J. McDonald, and A. J. Davison. A
benchmark for rgb-d visual odometry, 3d reconstruction and
slam. In Robotics and automation (ICRA), 2014 IEEE inter-
national conference on, pages 1524–1531. IEEE, 2014.

[8] J. C. Hart. Sphere tracing: A geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Com-
puter, 12(10):527–545, 1996.

8

Figure 11: Additional test shape reconstruction results. Left to right alternatingly: DeepSDF reconstruction and ground truth.

Figure 12: Additional test shape reconstruction results for Table ShapeNet class. All of the above images are test shapes represented with
our DeepSDF network during inference time, showing the accuracy and expressiveness of the shape embedding.

[9] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In SIGGRAPH,
volume 21, pages 163–169. ACM, 1987.

[10] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distri-
butions with applications to image databases. In Computer
Vision, 1998. Sixth International Conference on, pages 59–
66. IEEE, 1998.

[11] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. pages 519–528. IEEE,
2006.

9

Figure 13: Additional shape completion results. Left to Right: input depth point cloud, shape completion using DeepSDF, second view,
and third view.

10

DeepSDF_video.mp4

