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1. Mathematical Proofs

To prove propositions in the paper, we first define nota-
tions, as follows.

Definition 1. (Wesserstein spaces). Let P (X) be the set
of all Borel probability measures on a metric space X and
(X, d) be the Polish metric space. The r-Wesserstein space
where 1 ≤ r <∞ is defined as

Pr(X) =
{
P ∈ P (X)

∣∣∣ ∫
X

dr(x0, x)dP(x) <∞, x0 ∈ X
}
.

(1)

The Wesserstein spaces generalize the space of proba-
bility measures that have finite central moments and it can
be shown that the r-Wesserstein distance is a true metric
on Pr(X) [3, 2]. In the paper, we use the metric space
(X, d) = (Sn, ds) that has the Riemannian structure. As
(Sn, ds) is the Polish space1 and ds(p0, p) is a non-negative
bounded function for any p ∈ Sn, we can say that Ps(Sn) ⊆
P1(Sn) for all 1 ≤ s and we have Pr(Sn) = P (Sn) for all
r ∈ [1,∞) [3]. Let (Pk)k∈N be a sequence of probability
measures in P (X) and Q be another measure in P (X). For
sure, (Pk)k∈N ⊂ Pr(Sn). Let r ∈ Ψ = {1, 2, . . . } be a set
of moment order for r.

Proposition 1. As Pk weakly converges to Q,

• γSn → 0

• mr
Pk
→mr

Q for all r

Proof. By the Definition (6.8, [2]), Pk → Q if and only if
mr

Pk
→ mr

Q. This proves the second statement. Let grk =
|mr

Pk
−mr

Q| and gsk = |ms
Pk
−ms

Q| for some r 6= s ∈ Ψ.
Then, the weak convergence means grk, g

s
k → 0 as k →∞.

In other words, there exists some ε > 0 such that |grk| <
ε
2 , |g

s
k| < ε

2 . However grk+gsr ≤ |grk+gsk| ≤ |grk|+|gsk| < ε,
which implies that

∑
r,s |mPk

−mQ| → 0. If we generalize
this for all elements in Ψ, then γSn → 0. This proves the
first statement.

1As (Sn, ds) is compact metric space, it is complete and separable.

As a consequence of Proposition 1 and Theorem (6.9,
[2]), the convergence in the r-Wesserstein space is equiva-
lent to the convergence of the central moments of the order
r. So, here after, we assume that Pk is weakly converge to
Q. Then followings are true.

Proposition 2. As γSn converges to 0,∑
r∈Ψ

W r
Sn(Pk,Q)→ 0. (2)

Proof. As we mentioned before, Pr(Sn) = P (Sn) and
Q,Pk ∈ ∪r∈ΨPr(Sn). By Theorem (6.9, [2]), Pk
converges weakly to Q in ∪r∈ΨPr(Sn) if and only if∑
r∈ΨWr(Pk,Q)→ 0.

Lemma 1. The following distance function is differentiable
and bounded.

ds(Π
−1(p),Π−1(q))

= arccos

(
||p||2||q||2 − ||p||2 − ||q||2 + 4p · q + 1

(||p||2 + 1) (||q||2 + 1)

)
.

(3)

Proof. The composition of two differentiable functions is
differentiable and arccos is bounded because the inner
product of two points in the image of inverse of stereo-
graphic projection is bounded.

Lemma 2. Ex∼P
[
||∇xdrs(N, D(x))||2

]
<∞ for all r.

Proof. We assume that ∇xD(x) <∞ and y = D(x) ·N.

∇xdrs(N, D(x)) =

∇x [D(x) ·N]

[
1

−
√

1− y2

∑
r∈Ψ

(r − 1) arccos(r−1)(y)

]
≤

∣∣∣[∇xD(x)] ·N
∣∣∣ ∣∣∣∣∣ 1

−
√

1− y2

∑
r∈Ψ

(r − 1) arccos(r−1)(y)

∣∣∣∣∣ <∞.
(4)

The first and second lines are induced by the chain rule and
the following fact∇x[D(x) ·N] = [∇xD(x)] ·N. The last
line is induced by y = D(x) · N 6= 1, because the north
pole is excluded in the image of inverse of stereographic
projection.



Table 1. Generator used in CIFAR-10.
z ∈ R128 ∼ N (0, I)

Dense (N: 4× 4× 256)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)

Conv (N:3, K:3, S:1, BN, Tanh)

Table 2. Discriminator used in CIFAR-10.
Image x ∈ R32×32×3

ResBlock down (N:128, K:3, S:1, P:same, LN, LReLU)
ResBlock down (N:128, K:3, S:1, P:same, LN, LReLU)

ResBlock (N:128, K:3, S:1, P:same, LN, LReLU)
ResBlock (N:128, K:3, S:1, P:same, LN, LReLU)

Geometric Block

Table 3. Generator used in STL-10.
z ∈ R128 ∼ N (0, I)

Dense (N: 3× 3× 512)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)
ResBlock up (N:256, K:3, S:1, P:same, BN, ReLU)

Conv (N:3, K:3, S:1, BN, Tanh)

2. Network Architectures

In experiments for unsupervised image generation tasks
using ResNet, we used similar structures which are intro-
duced by [1]. In the last residual block of the discrimina-
tor network, we attached the geometric block for geomet-
ric transformation. We used the kernel of 3 × 3 size with
stride 1 and same padding for all convolutional layers. For
the generator, we used batch normalization with ReLU and
layer normalization with Leaky ReLU of slope 0.2 in the
discriminator network. Each residual block contained two
convolutional layers. All latent codes were sampled from
the 128 dimensional normal distribution with zero mean and
unit variance.

The detailed architectures of our sphere GAN are as fol-
lows, where N, K, S, P, BN, LN, and LReLU denote the
number of channels, kernel size, stride, padding, batch nor-
malization, layer normalization, and Leaky ReLU, respec-
tively.

In Algorithm 1, we provide Tensorflow-like pseudo code
for the inverse of stereographic projection. Both input and
output are tensors. Note that source code is available at
https://github.com/pswkiki/SphereGAN.

Table 4. Discriminator used in STL-10.
Image x ∈ R48×48×3

ResBlock down (N:256, K:3, S:1, P:same, LN, LReLU)
ResBlock down (N:256, K:3, S:1, P:same, LN, LReLU)
ResBlock down (N:256, K:3, S:1, P:same, LN, LReLU)
ResBlock down (N:256, K:3, S:1, P:same, LN, LReLU)

ResBlock (N:256, K:3, S:1, P:same, LN, LReLU)
Geometric Block

Table 5. Geometric Block
LReLU

Average mean pooling
Dense (N: 1024)

Inverse of stereographic projection

Algorithm 1 Inverse of Stereographic projection
Input: Input tensor u ∈ Rn.
Output: Output tensor v ∈ Sn ⊂ Rn+1.

1: u← Divide
(
Transpose(2u), Pow(Norm(u),2)+1

)
.

2: v←Divide
(
Pow(Norm(u),2)−1, Pow(Norm(u),2)+1

)
.

3: v← Transpose
(
Concat(u, v)

)
.

4: return v.

3. Additional Results
Fig.1 shows the qualitative results of sphere GAN for

CIFAR-10. In Figs.2 and 4, both IS and FID converged
smoothly after 700K iterations. As shown in Figs.3 and 5,
γSn on CIFAR-10, STL-10 gradually reduced.
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Figure 1. Qualitative results of sphere GAN for CIFAR-10 dataset

Figure 2. Learning curves of IS and FID for CIFAR-10 using the
network architectures in Tables 1 and 2.

Figure 3. Learning curves of γSn and the generator loss for
CIFAR-10 using the network architectures in Tables 1 and 2.

Figure 4. Learning curves of IS and FID for STL-10 using the
network architectures in Tables 3 and 4.

Figure 5. Learning curves of γSn and the generator loss for STL-10
using the network architectures in Tables 3 and 4.


