
In the supplementary material, we provide our analysis on AWA2, CUB and SUN datasets. We evaluate for the need of
learning an optimal discriminative semantic aligned space in step 1 for both the inductive and transductive settings. Further,
we examine the unseen class generator learned without any conditional information of seen classes in the transductive setting.
In the end, we also provide details of the fine-tuned hyper-parameters utilized by SABR on the three benchamark datasets.

Type Method AWA2 CUB SUN
SABR-I (DS) 65.1 59.9 61.2

I SABR-I (SR) 63.1 63.1 61.6
SABR-I 65.2 63.9 62.8
SABR-T (DS) 88.0 70.1 65.1

T SABR-T (SR) 88.2 72.9 66.9
SABR-T 89.0 74.0 67.5

1 I - inductive ZSL setting, T - transductive ZSl setting.

Table 1: Performance in the conventional ZSL set-
ting of different baselines with our proposed ap-
proach.

Type Method AWA2 CUB SUN
MCAu MCAs H MCAu MCAs H MCAu MCAs H

SABR-I (DS) 24.9 90.3 39.0 43.3 60.2 50.3 45.4 32.5 37.9
I SABR-I (SR) 28.5 88.9 43.2 53.4 55.6 54.5 44.3 34.84 39.01

SABR-I 30.3 93.9 46.9 55.0 58.7 56.8 50.7 35.1 41.5
SABR-T (DS) 80.7 88.3 84.4 64.2 68.1 66.1 55.8 38.6 45.6

T SABR-T (SR) 79.3 88.2 83.5 66.4 71.0 68.6 55.8 40.1 46.7
SABR-T 79.7 91.0 85.0 67.2 73.7 70.3 58.8 41.5 48.6

1 I - inductive GZSL setting, T - transductive GZSL setting

Table 2: Performance in the Generalized ZSL Setting of different baselines with our proposed approach.

1. Effect of learning the optimal latent space
In this section, we experimentally show that having both the classifier fc and the regressor fr to learn a discriminative and

semantic aligned space helps to improve the performance in both the ZSL and GZSL setting. We provide two baselines to the
existing SABR-I and SABR-T, to convey the importance of both the losses Lc and Ls defined for learning an optimal latent
space. In the first baseline DS, we learn the latent space using just the classification loss, Lc i.e. making the latent space
discriminative but not preserving the semantic relations. In the second baseline SR, we learn the latent space by preserving
the semantic relations and using the similarity based cross entropy loss, Ls. Once this latent space ψ is learned by either
of the baselines, we model the generator to synthesize unseen class representations in both the inductive and transductive
setting. Table 1 and 2 presents the results of the baselines with our approach on the three benchmark datasets in both ZSL
and GZSL setting.

Firstly, the differences in the performance of the two baselines is more evident in the generalized ZSL setting than con-
ventional ZSL setting. We hypothesize that the synthetic unseen class instances are confused with the seen classes in the final
classifier leading to more notable differences in the performance. Secondly, we almost observe the trend that SABR-x (DS)
< SABR-x (SR) < SABR-x where SABR-x can be SABR-I or SABR-T. This can be accounted due to the fact that the latent
space learned by baseline DS encodes the discriminative features for seen classes but fails to generalize on unseen classes as
no relationship is captured within the class embeddings. Although, if the semantic relations are captured by the latent space
as in the baseline SR, it may suffer from hubness problem leading to reduced performance. Thus, SABR-x preserves the
semantic relations between classes while discriminating the information among classes for an improved performance in both
the conventional and generalized setting for the inductive and transductive approach.



Dataset ZSL GZSL
MCAu MCAs H

AWA2 12.6 11.4 91.2 20.2
CUB 9.3 8.8 21.1 12.4
SUN 1.7 1.3 15.2 2.4

Table 3: Performance in the conventional and
generalized ZSL when unseen class instances
are utilized without transfer of knowledge from
seen classes

2. Learning marginals of unseen classes without conditionals
In this experiment, we learn a generative adversarial network which minimizes the marginal distribution between unseen

class instances and generated instances for the transductive setting. This is done without utilizing any information of the seen
class conditional data and thus there is no transfer of information from seen classes to unseen classes. For this, ω is equated
to zero in equation 9.

The results are reported on AWA2, CUB and SUN in table 3. It can be clearly seen that learning the marginal distribution
does not guarantee the alignment of conditionals of unseen classes, thus the model performs poorly in both ZSL and GZSL
setting. This motivates us to learn a generator which minimizes marginal distribution by utilizing the conditional information
of seen classes controlled by the hyper-parameter ω.

3. Hyper-parameter details
3.1. Learning the optimal latent space

In the first step of SABR-I and SABR-T, we learn a discriminative semantically aligned latent space, Ψ from the seen
classes data. The dimension of this latent space is 1024 across all the datasets. Table 4 presents the batch size, weighing
factor of semantic alignment (γ) in equation 3 and learning rate (lr).

Dataset Latent dim Batch size γ Lr
AWA2 1024 64 0.01 0.001
CUB 1024 64 0.01 0.001
SUN 1024 64 0.01 0.001

Table 4: Hyper-parameters of step-1, learning an optimal
space

3.2. Bias Reducing Generator Network for SABR-I

In the inductive setting, we learn a generator Gs : 〈z, c(ys)〉 → Ψ where z denotes the noise vector , c(ys) is the
class embedding of the seen classes and Ψ is the 1024 dimensional latent representations of the seen classes that we want
the generator to synthesize. Table 5 gives the details of learning rate (lr), batch size, dimension of noise vector z (z dim),
dimension of class embedding (c(y) dim), early stopping notch (stop), gradient penalty coefficient (λ) and β defined in
equation 6.

3.3. Bias Reducing Generator Network for SABR-T

Given the marginal distribution of unseen classes, we learn a generator Gu : 〈z, c(yu)〉 → Ψ that takes noise z and
semantic vector c(yu) as the input and outputs a synthetic representation of unseen class. This is done by transfer of the class
conditional information from the seen classes to unseen classes. Hyper-parameters across the three datasets are depicted
in table 6 i.e. learning rate (lr), batch size, dimension of noise vector z (z dim), dimension of class embedding (c(y) dim),
gradient penalty coefficient (λ) and regularization parameter (ω).



Dataset Lr Batch size z dim c(y) dim stop β λ
AWA2 0.00001 128 85 85 40 0.1 10
CUB 0.0002 128 312 312 45 0.1 10
SUN 0.0001 128 102 102 95 0.1 10

Table 5: Hyper-parameters for SABR-I

Dataset Lr Batch size z dim c(y) dim λ ω
AWA2 0.0001 128 85 85 10 0.008
CUB 0.0002 128 312 312 10 0.002
SUN 0.0001 128 102 102 10 0.002

Table 6: Hyper-parameters for SABR-T


