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1. Proof of Theorem 3.1

Proof. The objective function of the optimization problem
in (6) is a quadratic function of (), which can be simplified
as follows:
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where q = % Z?zl q;. In the above, the second equality
holds because
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Now the original optimization problem can be equivalently

written in vector form of ¢, as follows:
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We define the Lagrangian function for the optimization
function by using the new vector form in g;:
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where a; > 0,7 = 1,--- ,n are dual variables for inequal-

ities in the original contraints (7), and 8 € R? is the dual

vector for equality contraint given by the definition of q.

Taking partial derivative of £ with respect to ¢, and let-
ting it equal to 0, we have
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Then we can obtain the root of the above equation:
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As the optimization problem has a quadratic objective func-
tion and quadratic constraints, Kuhn-Tucker condiction is
both necessary and sufficient to achieve the optimality.
Therefore, ¢q;,7 = 1,--- ,n, is an optimizor of the given
optimization problem. Since the minimizor of the opti-
mization problem is linearly dependent, the conclusion fol-
lows. O



