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1. Proof of Theorem 3.1
Proof. The objective function of the optimization problem
in (6) is a quadratic function of Q, which can be simplified
as follows:
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Now the original optimization problem can be equivalently
written in vector form of qi as follows:

min
qi∈Rp
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subject to

‖qi‖22 − si ≤ 0, i = 1, · · · , n,
n∑
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(qi − q̄) = 0.

We define the Lagrangian function for the optimization
function by using the new vector form in qi:
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where αi ≥ 0, i = 1, · · · , n are dual variables for inequal-
ities in the original contraints (7), and β ∈ Rp is the dual
vector for equality contraint given by the definition of q̄.

Taking partial derivative of L with respect to qi and let-
ting it equal to 0, we have

∂L
∂qi

= 2(qi − q̄) + 2αiqi + β = 0, for i = 1, · · · , n.

Then we can obtain the root of the above equation:

q∗i =
1
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(q̄− 1

2
β), for i = 1, · · · , n.

As the optimization problem has a quadratic objective func-
tion and quadratic constraints, Kuhn-Tucker condiction is
both necessary and sufficient to achieve the optimality.
Therefore, q∗i , i = 1, · · · , n, is an optimizor of the given
optimization problem. Since the minimizor of the opti-
mization problem is linearly dependent, the conclusion fol-
lows.
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