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1. Additional Experimental Results
We provide additional experimental results in the docu-

ment and give more details on the experimental setups for
the synthetic and real data experiments.

1.1. Synthetic Data

In the synthetic experiment, we also show the model es-
timation error. Given an estimated model M ∈ R3×3 and the
ground-truth model Mg ∈ R3×3, such that ∥M∥F = ∥Mg∥F =
1, we estimate the model computation error as,

e = ∥Mg −M∥F
where ∥.∥F denotes the operator for the Frobenius norm.

Additional details. We usem = 100 points to evaluate on
the synthetic data with noise and outliers for all methods.
For ransac and ransac-M, we use 1000 iterations and use
L1 norm to detect outliers. We use the same threshold in
our method and the compared methods. Figure I shows the
plots of the comparison for correspondences with noise and
outliers.

The results show that the model error of sparse-basis
stays lower than ransac-M particularly for low noise and
outlier rate. At high noise, the sparse-basis model estima-
tion deviates stronger than ransac-M. However, in all cases,
ransac performs poorly due to the fact that some of the
ground-truth models are the 2d rotation-induced homogra-
phy.

1.2. Real Data

We show the ground-truth trajectory of the Robot car
dataset sequence [2] used in the main paper in figure III.
We additionally run our method sparse-basis and the com-
pared method ransac on a driving sequence of the KITTI
dataset [1]. The KITTI dataset consists of lower quality
images with lower frame rate compared to the Robot car

Figure I: Model error on the synthetic data.

dataset [2]. We plot the results for the KITTI dataset se-
quence the same way as for the TUM dataset [3] in the main
paper.

Additional information on the Oxford Robotcar
dataset [2] experiment.
Average number of inliers:
Number of inliers of sparse-basis: 95.6
Number of inliers of ransac: 82.7

The plots in figure II show that our method obtains poses
with very few outliers and corresponds better to the prob-
able physical motion of the car compared to ransac. We
further plot the execution time of our method compared to
the global method for varying outlier rate in figure IV.

2. Proofs

In this section, we provide the proofs of the propositions
(3.2, 3.3 and 4.2) presented in the main text. For the con-
venience of the reader we rewrite each proposition below,
followed by its proof.

Proposition 3.2 If z ∈ {0,1}n represents the sparsity of the
basis vector y, Problem (2) is then equivalent to solving the
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Figure II: Two-view poses for KITTI. We are able to cap-
ture the turns and the degenerate motions much better de-
spite the short baseline due to the sparse basis search.

Figure III: Trajectory path of the car.

following MIP.

min
y∈Rn,z∈{0,1}n

∑
i

zi,

subject to ∥Md(Ω)y∥∞ ≤ ε,
∣yi∣ ≤ zi, y⊺w = 0, ∀i,∀w ∈ W,

∥y∥∞ = 1,

∑
i

zi ≥ 1.

(3)

Proof For each component yi of the basis vector y, zi ∈

Outlier Rate

T
im

e
 (

s
)

Figure IV: Mean time plot for n = 100 points. Our method
is slower than the global method which is expected due to
the higher number of binary variables.

{0,1}. We now consider the two possibilities for the value
of zi:
Case I: zi = 0
If zi = 0, the constraint ∣yi∣ ≤ zi implies that yi must be 0.
Case II: zi = 1
If zi = 1, ∣yi∣ ≤ 1. However, at the global minimum of the
objective function ∑ zi, zi must be 0 for yi = 0. Therefore,
the binary vector z represents the sparsity of the vector y
and consequently problems (2) and (3) are equivalent.

Proposition 3.3 For M = Md(Ω), z ∈ {0,1}n, s ∈ {0,1}m,
and y ∈ Rn, the following MIP ensures that at least half of
the correspondences respect the sparse basis obtained by
solving,

min
y,z,s

n

∑
i=1
zi,

subject to m⊺
j y ≤ ε + sjm, ∀j = 1, . . . ,m,

∣yi∣ ≤ zi, y⊺w = 0, ∀i,∀w ∈ W,

∥y∥∞ = 1,

∑
i

zi ≥ 1,∑
j

sj ≤m/2.

(4)

Proof The proof for the equivalent objective is already pro-
vided in Proposition 3.2. For the rest, we use a similar line
of argument as in (3). If (4) has a solution, then the con-
straint ∑ sj ≤m/2 must be satisfied. Consequently, at least
half of sj must be 0. We now consider two possibilities for
(uj , vj).
Case I: (uj , vj) is an inlier:
If (uj , vj) is an inlier: then the constraint m⊺

j y ≤ ε must be
satisfied for the sparse basis y, allowing sj to be 0.
Case II: (uj , vj) is an outlier:
If (uj , vj) is an outlier: then the constraint m⊺

j y ≤ ε no
longer holds, however, m⊺

j y ≤ ε + sjm still holds for sj = 1,
where m here becomes the large scalar constant of the big-
M formulation.

Therefore, solving problem (4) gives a model basis y
such that at least half of the points agree. The full inlier-



outliers can be obtained by simply checking the constraint
m⊺

j y ≤ ε after recovering y.

Proposition 4.1 For the rotation-induced 2d homography
H, with intrinsics K ≠ I and translation t = 0, we have,

HH⊺ ≠ I, (5)

where, r ≠ ±[0 0 π/2]⊺.

Proof We consider R ∈ SO3 to be the camera rotation and
the translation t = 0. We can express the homography H for
the uncalibrated correspondences as:
H = KRK−1.
By right multiplying both sides with K, we have,
HK = KR.
Multiplying both sides by their transpose, we obtain:
(HK)⊺(HK) = (KR)⊺(KR).
We proceed to the proof by contradiction and assume H ∈
SO3. This implies, K⊺K = R⊺K⊺KR⊺.
Let K⊺K = QΛQ⊺ be the Eigen decomposition of the sym-
metric matrix K⊺K, where Q ∈ SO3 and Λ is a diagonal
matrix. We therefore obtain: QΛQ⊺ = R⊺QΛQ⊺R.
As R⊺Q is an orthogonal matrix, it must represent the eigen-
vectors of K⊺K. In other words, vectors in Q and RQ must
be identical up to sign and permutation. It is straightforward
to see that this holds if and only if, R = I or in special cases
with two equal eigenvalues of K⊺K when R is a permutation
matrix for the first two eigen vectors. Therefore, in general
H /∈ SO3 and HH⊺ ≠ I.
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