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In this document, we further analyze our video extraction
and deblurring networks followed by additional qualitative
results and comparisons for video generation and single im-
age deblurring. Note that videos can be viewed by clicking
on the image, when document is opened in Adobe Reader.
Video Results corresponding to the Figs. 6, 7, and 8 of
our main paper are provided in Figs. S1, S2, and S3,
respectively.

S1. Ablation Studies for Video Extractor

This section describes the experiments that lead to our
design choices and involves quantitative comparisons of dif-
ferent configurations for training our network. In the fol-
lowing subsections, reported scores are calculated over 250
test examples. Each test sequence is composed of 7 frames
of resolution 1280×704, taken from the 11 test videos from
the GoPro Dataset [23] (the same test set was used for video
extraction evaluation in section 3.3 of the main paper).

S1.1. Effect of different losses

We experimented with the effect of various losses while
training the RVE-RVD pair for video reconstruction, and
analyzed their performance based on the average recon-
struction error values. In the first configuration, both frame
reconstruction loss and the TV loss were enforced at only a
single scale (corresponding to j = 4 in Eqns. (4) and (5)
of our main paper). This model did not perform well on
sequences containing complex motion, and resulted in lo-
cal fluctuations in motion, leading to a total MSE of 0.595.
In the second configuration, the reconstruction losses were
present at all the 4 scales but no cost was enforced (TV
loss) on the predicted flows. On visual inspection, we found
that it resulted in flows containing ‘noise’ (reduced spatial
smoothness) thus resulting in slightly higher reconstruction
errors (MSE 0.568). When we included multi-scale frame
reconstruction and TV loss with relative weights as men-
tioned in section 2.4 (which is the final loss setting that we
use), it led to a total MSE of 0.542.

∗Work done while at Indian Institute of Technology Madras, India.

S1.2. Non-recurrent CNN

For the task of video reconstruction, we also experi-
mented by replacing our RVE with a 3D-convolutional net-
work. Specifically, we chose an architecture with four
3× 3× 3 convolutional layers and 3D-maxpool operations
to finally yield a feature of same dimension as the motion
embedding returned by RVE. The number of filters was cho-
sen to approximately match the total number of parameters
in our RVE. The 7 frames were stacked along the temporal
dimension and fed to this CNN-RVD pair, which is trained
for the video reconstruction task. However, it was not quite
successful in reproducing local motion in dynamic videos
and led to a higher MSE of 0.595 against 0.542 achieved
using RVE. These observations reaffirm the effectiveness of
recurrent modules for our task.

S1.3. BIE sans Sharp Image

We trained a version of our network wherein the BIE was
not fed a sharp image. This network led to higher average
error 48.75 (using the loss function described in Eqn. (6))
than our main network. We suspect that this is because the
availability of sharp intensities provides a better reference
for measuring the blur at each pixel. In other words, the
ill-posed-ness of the blur prediction task reduces with the
availability of the sharp image.

S1.4. Direct BIE-RVD Training

We found that direct training of BIE and RVD from
scratch poses a formidable challenge and the performance
is below par (average error 50.08). The improvement due
to pre-training of RVD is attributed to the fact that video re-
construction task does not suffer from ambiguity and hence
RVD can be trained optimally using the conventional loss
(eq.5 in the main paper). Moreover, our approach of train-
ing RVD for the surrogate task of extracting motion rep-
resentation of short video sequences has the advantage of
rendering the learned motion representation interpretable.

S1.5. Direct Intensity Estimation

We investigate the advantage of motion-flow learning,
instead of direct intensity estimation. In this experiment,
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Figure S1. Comparisons of our video extraction results with [13] on motion blurred images obtained from the test dataset of [23]. The first
row shows the blurred images while the second and third rows show videos generated by our method and [13], respectively. Videos can be
viewed by clicking on the images, when document is opened in Adobe Reader.
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Figure S2. Video generation from images blurred with global camera motion from datasets of [7,15] and [19]. First row shows the blurred
images. The generated videos using our method are shown in second row.

the modification involved removal of the transformer lay-
ers (described in section 2.2 of main paper) from RVD,
such that the modified network (referred to as RVDdirect) di-
rectly estimates pixel intensities (instead of motion-flows).
Our experiments revealed an issue with this approach:
such an RVE-RVDdirect pair learns an identity mapping (i.e.
the sharp intensities are directly propagated from RVE to
RVDdirect through the hidden features). Such an autoen-
coder does not achieve the goal of learning motion repre-
sentations and hence fails to be useful in guided training of
BIE for the video extraction task. To avoid this limitation,
we directly trained the BIE-RVDdirect pair to estimate the
intensities of the sharp video from a blurred image. Results
of this network are shown in Fig. S4, where it can be ob-
served that regressing to the intensities of each frame leads
to distortions in the image content and unpleasant artifacts.
The method of [13] attempts to address this issue with the
help of more complex losses (including perceptual loss and
adversarial loss), but still fails in cases of large motion, as
demonstrated in section 3.3 of the main paper. Note that our

original approach (which performs motion-flow estimation)
explicitly enforces motion relevant feature learning by pre-
dicting pixel-level motion-flows instead of the intensities.
The encoding learnt by our RVE-RVD cannot be an identity
mapping since robust optical flow prediction is not possible
without capturing the dynamics of the scene

S2. Analysis of Our Deblurring Network

S2.1. Implementation Details

In Table S1, we provide layer-wise details of parameters
involved in our deblurring architecture. Symbols H and W
represent the height and width of the input blurred image.

S2.2. Effect of growth-rate (GR)

Growth-rate of the densely connected encoder layers is
the key hyper-parameter of our deblurring network. To find
its optimal value, we design and train 3 versions of the net-
work with different growth-rates. Fig. S5 shows compar-
isons of the convergence process of these 3 models. It can



Figure S3. Video generation results on real motion blurred images from dataset of [32]. The first row shows the blurred images. Second
row contains the extracted videos with our method.

Figure S4. A blurred image (left) from the dataset of [23] and the
corresponding videos obtained using a baseline (middle) which
estimates the intensities of each frame and ground-truth video
(right).

be observed that the training performance get better with
increase in growth-rate. We chose GR=32 in our proposed
model, since the improvement beyond 32 is marginal and
it serves as a good balance between efficiency and perfor-
mance.

Figure S5. Training loss curves corresponding to models with dif-
ferent growth-rates.

S2.3. Effect of local residual connections

In Fig. S6, we compare the training performance of our
deblurring network with a version of it that does not con-
tain local residual connections [44]. These connections ex-

ist between the input and output of each dense block in the
encoder and contribute to the flow of information and gra-
dient. It can be inferred that inclusion of such connections
leads to lower errors, validating that this component effi-
ciently improves the performance.

Figure S6. Comparison of training performance of our deblurring
network with and without local-residual connections.

S3. Quantitative Evaluation on static scenes

In Table 1, we had evaluated our method on blurred im-
ages of dynamic scenes from [23], and presented compar-
isons with 5 state-of-the-art deep learning based methods
[33,7,23,18,34]. The main application of our work is ef-
ficient extraction of motion and sharp content from such
general dynamic scenes. Due to the complexity of the
blur present in such images, conventional image forma-
tion model based deblurring approaches struggle to perform
well. Hence, our comparisons included only 2 conventional
methods ([39,42] were selected as representative traditional
methods for non-uniform deblurring, with publicly avail-
able implementations).

In Table S2, we provide quantitative evaluation on the
static-scene blurred dataset of [19] along with comparisons
with conventional approaches of [3,5,17,25] (whose de-



Table S1. Architecture details of our proposed Deblurring Mod-
ule (DM). The symbol (+k) denotes the width increment on the
densely connected path.

stage output Layer Details

H
2

× W
2

Space To Depth Transformation
Factor of 2

Conv1 H
2

× W
2

7 × 7, 12, 64, stride 1

RDB1 H
2

× W
2


3×3,64, GR
3×3,64+GR, GR
3×3,64+2*GR, GR
3×3,64+3*GR, GR
3×3,64+4*GR, 64

 × 3

Conv2 H
4

× W
4

3 × 3, 64, 96, stride 2

RDB2 H
4

× W
4


3×3,96, GR
3×3,96+GR, GR
3×3,96+2*GR, GR
3×3,96+3*GR, GR
3×3,96+4*GR, 96

 × 3

Conv3 H
8

× W
8

3 × 3, 96, 128, stride 2

RDB3 H
8

× W
8


3×3,128, GR
3×3,128+GR, GR
3×3,128+2*GR, GR
3×3,128+3*GR, GR
3×3,128+4*GR, 128

 × 3

Bottleneck1 H
8

× W
8

[
1×1,128, 128*2
3×3,128*2, 128

]
Deconv1 H

4
× W

4
3 × 3, 128, 96, stride 2

Bottleneck2 H
4

× W
4

[
1×1,96, 96*2
3×3,96*2, 96

]
Deconv2 H

2
× W

2
3 × 3, 96, 64, stride 2

Bottleneck3 H
2

× W
2

[
1×1,64, 64*2
3×3,64*2, 64

]
Deconv3 H × W 3 × 3, 64, 32, stride 2

Projection Conv1 H
4

× W
4

3 × 3, 96, 96, stride 1

Projection Conv2 H
2

× W
2

3 × 3, 64, 64, stride 1

Conv4 H × W 3 × 3, 35, 16, stride 1

Conv5 H × W 3 × 3, 16, 3, stride 1

# params (for GR=32) 4.46 × 106

blurred outputs are publicly provided by [19]) and the re-
cent method of [36]. The set consists of 100 non-uniformly
blurred images of scenes containing people, faces, text, sat-
urated regions, natural and man-made structures. Quan-
titative comparisons (computed based on best alignment)
reveal the parity/superiority of our method on this deblur-
ring dataset as well, since our approach is more success-

Table S2. Quantitative comparisons on Lai’s Dataset [19].
Method [5] [3] [17] [25] [39] [42] [36] Ours
PSNR 16.71 17.98 17.90 18.47 18.41 18.43 18.94 18.97
SSIM 0.675 0.733 0.738 0.759 0.719 0.750 0.768 0.773

Figure S7. Comparison of video extraction results of our method
with [7] and [36].

ful in capturing spatially varying nature of blur and delivers
artifact-free results. An additional highlight of our method
is that it is quite fast and does not involve any parameter
tuning during test phase.

S4. Comparisons with Existing Motion Extrac-
tion Approaches

We also compare our video estimation approach with ex-
isting methods of [7] and [36], that estimate motion from a
blurred image as an intermediate step for motion deblur-
ring. Although these methods are proposed purely for the
purpose of deblurring, we utilize their deblurred image and
motion trajectory to construct a video from a single blurred
image. Fig.S7 shows the comparison of generated videos of
the three approaches for 3 scenarios: a fronto-parallel scene
(1st row), 3D scene (2nd row) under pure camera motion,
and a dynamic scene (3rd row).

The authors of [7] proposed to deblur dynamic scenes by
estimating a single motion flow-map from a given blurred
image. To obtain a trajectory, we interpolated along the
predicted flow map to get 9 motion flows which are then
applied on their deblurred image to get a video. It can be
observed that results of [7] (in Fig.S7(a)) suffer from severe
inconsistencies in pixel motion for scenes containing mod-
erate blur since [7] only encodes short range motion. In
contrast, our method’s results are more accurate and realis-
tic.

The method of [36] estimates a motion density function
(MDF) which determines the relation between a blurred im-
age and the corresponding sharp image. As mentioned in



the main paper, the poses in MDF do not have a time-stamp
associated with them. It is non-trivial to arrive at a tempo-
ral ordering of these poses. Importantly, unlike our model,
the MDF by design addresses only camera motion and can-
not handle independent object motion or 3D scenes. Never-
theless, we compare our video extraction results with the
best possible videos which can be constructed with their
outputs.1 To extract a motion trajectory from MDF, we
fit a 4th order polynomial through MDF poses and sam-
pled 9 points along the trajectory. These 9 camera poses are
used to warp their deblurred image to obtain 9 frames. As
shown in Fig.S7(b)), while the MDF result appears plausi-
ble for the constrained case of fronto-parallel static scene, it
fares poorly for general scenes where the generated videos
contain the same motion for the entire scene (as expected),
which is quite inconsistent with the blur in the input image.
In contrast, our results are more realistic and faithful to the
blurred image.

S5. Additional Qualitative Results for Video
Extraction

Results on GoPro dataset [23]: In Figs. S8-S10 we pro-
vide additional results of video extraction on test images
constructed using videos from the test set of GoPro dataset
[23]. These results demonstrate our network’s ability to
handle 3D scenes with dynamic object motion and camera
motion. It can be observed our results closely mimic the
ground-truth videos, while the results of [13] suffer from
artifacts even when the corresponding regions contain only
a moderate amount of blur. Such differences become more
pronounced on images affected with large blur (blurred im-
ages created by averaging more than 7 frames), as shown on
two examples in Fig. S11.
Results on Blur Detection dataset [32]: In Figs. S12-S16,
we provide additional results of our 7 frame model on im-
ages from the dataset of [32] which contains a wide variety
of real blurred images.

The comparisons demonstrate that in many cases, the re-
sults of [13] suffer from local motion and color distortions
(Fig. S12), failure in detecting motion (Fig. S13) as well
as distortions and inconsistencies due to deblurring (Figs.
S14,S15). In cases containing mild blur (Fig. S16), their
results are comparable to ours. Note that by having a single
recurrent network to generate the video, our network can
be directly trained to extract even higher number of frames
(> 9) without any design change or additional parameters.
In contrast, [13] requires training of an additional network
for each new pair of frames.

1We used the implementation provided by the authors of [36] upon
request.

S6. Additional Qualitative Results for Single
Image Deblurring

In Figs. S17-S24, we provide visual comparisons of our
results for single image deblurring with existing deblurring
approaches on diverse scenes from the GoPro dataset [23].
In comparison to the results of existing methods, the texture
details in our results are much closer to the ground-truth
sharp frame.

S7. Discussion
We addressed an interesting problem in that blurred im-

ages have generally been considered as a nuisance and the
usual practice is just to deblur the image. In contrast, our
work reveals the richness of information embedded within
a blurred image that can be ably derived to convey how the
camera and objects in a scene move. Our complementary
networks extract pixel-level motion which can potentially
be utilized to gain insights into the nature of incidental ego-
motion, distinguish between static and dynamic contents in
a scene, reveal sub-pixel motion, and yield plausible tem-
poral ordering.

The prime reason behind the effectiveness of our frame-
work is decomposition of the task into multiple sub-
problems. Specifically, modeling multi-frame estimation
task as recurrent motion prediction extracts scene dynamics
while preserving scene appearance. Our convolutional re-
current design for motion prediction greatly improved train-
ing efficiency of RVE-RVD (took only 6 hours / 5 × 104

iterations to converge). Our choice of video reconstruction
as a proxy task (less ambiguous and simpler) improved our
network’s convergence.

Our approach could potentially be utilized in several
other vision tasks. The motion flows estimated by BIE-
RVD can be utilized for blur-based dynamic region seg-
mentation, our unsupervised motion prediction framework
(BIE-RVD) can be extended to perform depth estimation for
static scenes where the spatially varying blur is linked to
the depth of the scene, and the motion encoding extracted
by our BIE can be used for action recognition from a single
blurred image.



Figure S8. Comparisons of our video extraction results with [13] on motion blurred images created from the test videos of [23]. In the
top-down order, we show the blurred input, result of [13], our result and the ground-truth video.



Figure S9. Comparisons of our video extraction results with [13] on motion blurred images created from the test videos of [23]. In the
top-down order, we show the blurred input, result of [13], our result and the ground-truth video.



Figure S10. Comparisons of our video extraction results with [13] on motion blurred images created from the test videos of [23]. In the
top-down order, we show the blurred input, result of [13], our result and the ground-truth video.



Figure S11. Comparisons of our video extraction results with [13] on motion blurred images from the test videos of [23]. In the top-down
order, we show the blurred input, result of [13] and our result.



Figure S12. Video extraction results on dataset of [32]. The left column contains input motion blurred images while the generated videos
using [13] and our method are shown in the middle and the right column, respectively. These results show the local motion and color
distortions in videos generated by [13]. Results using [13] have distortions on the train door in Example 1, road in Example 2, basketball
hoop in Example 3 and road in Example 4.



Figure S13. Additional results on the dataset of [32]. These results show some cases where method [13] fails in detecting motion.



Figure S14. Additional results on the dataset of [32]. Results using [13] have distortions near green paint in Example 1, arm-rest in Example
2 and road in Example 3



Figure S15. Additional results on the dataset of [32]. These results show distortions and inconsistencies in videos generated by [13].



Figure S16. Additional results on the dataset of [32]. These are results on images having mild blur and results of [13] are comparable to
ours.
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Figure S17. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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Figure S18. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.



Blurred Whyte et al. Nah et al.
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Figure S19. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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Figure S20. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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Figure S21. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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Figure S22. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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Figure S23. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.



Blurred Whyte et al. Nah et al.
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Figure S24. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in
patches corresponding to the Blurred image, results of [39], [23], [18], [34], Ground-truth and Our Result.
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