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1. Effective Path Extraction for More Network
Structures

For the sake of brevity, we only introduce effective path
extraction for networks consist of convolutional layers and
FC layers in the submitted paper. We further explain other
common network structures’ extraction methods in this sec-
tion.

Skip Connection To handle skip connections in ResNet,
we need to merge neurons contributed from two different
layers. Consider a skip connection from layer l to layer
l+m, then active neurons in layer l are collected from layer
l + 1 and l + m, denoted as N l = {nl

k|k ∈ K̃l+1 or k ∈
K̃l+m}, where K̃l+1 and K̃l+m are the selected sets of
weight indices in layer l + 1 and l +m respectively.

Pooling Layer Pooling layers can be treated as the special
case of convolutional layers during extracting. For average
pooling layer, we treat it as a convolutional layer with all
weights equal to 1; for max pooling layer, we treat it as
a convolutional layer that always picks rank-1 weight and
input neuron pair when finding the minimum K̃l

p.

2. Effective Path Visualization for CIFAR-100

To explore path specialization on more realistic dataset
than LeNet, we study the similarity of per-class effective
paths on CIFAR-100. Fig. 1 shows the class-wise path sim-
ilarity of 15 classes in CIFAR-100, which are belonged to
three different super classes. We show super classes vehicles
1, large natural outdoor scenes and flowers from left to right,
each of which contains 5 basic classes. We can find that
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Figure 1: Class-wise path similarity for CIFAR-100.

classes belong to the same super classes have higher similar-
ity than classes from different super classes, which indicates
that effective path discovers the class hierarchy without prior
knowledge of super classes.

3. Adversarial Samples Defense
3.1. Adversarial Samples Similarity Analysis for

ResNet-50

Per-layer similarity distribution for ResNet-50 on Ima-
geNet is shown in Fig. 2. Similar to AlexNet, adversarial
images lead to lower rank-1 similarity and higher rank-2
similarity compared with normal images. Furthermore, cor-
responding to AlexNet’s FC layers, the largest similarity
delta is also located in last several layers.

3.2. Weight-based Defense Model

For adversarial detection, we can use information from
model weights as alternative of synapses. By calculating
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(b) Rank-1 similarity delta.
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(c) Rank-2 similarity.
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(d) Rank-2 similarity delta.

Figure 2: Distribution of per-layer similarity for ResNet-50 on ImageNet. Each line plot represents the mean of each kind of
adversarial examples’ similarity, with the same-color band around to show the standard deviation. The dashed lines indicate
that down-sampling is performed in the next layer.
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Figure 3: t-SNE 2D embedding of original images and adversarial images from different attacks. Each point stands for an
image. The first two pictures show results on AlexNet, while the last one show effective path’s result on ResNet-50. For
brevity, FGSM, BIM, JSMA, DeepFool, and CWL2 are grouped into untargeted attacks. Targeted version of FGSM and
CWL2 are also grouped into targeted attacks.

image-class path similarity from weights in effective path
instead, i.e., let J l

P = |W l ∩ W̃ l
p|/|W l| for layer l, we

obtain weight-based joint similarity. The detection result
using weight-based defense metric for AlexNet is shown in
Fig. 4, which indicates that it achieves as high accuracy as
the synapse-based metric.

3.3. Adversarial Sample Visualization

In this section, we use t-SNE to visualize effective path
similarity and CDRP, which provide an intuitive way to show
the adversarial sample detection ability of both methods. For
consistency with our defense model, we use rank-1 and
rank-2 effective path similarity as input features of t-SNE.
Fig. 3a and Fig. 3b show the t-SNE 2D embedding of ef-

fective path similarity and CDRP on AlexNet respectively.
For our method, random images are in two dissociative clus-
ters. In the cluster contains all other images, original images
are located in the edge of right side of the cluster, which is
partly separable with other adversarial images. Adversarial
images from untargeted attacks locate in the nearest area be-
side original examples, which is coincident with the fact that
untargeted ones contain the smallest perturbations among
these adversarial examples. On the other hand, adversarial
images from targeted attacks and patch attack are far away
from original images. All the above shows that effective path
similarity catches the difference between normal images and
adversarial images from multiple attacks. For CDRP, the
location of original images and adversarial images from un-
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Figure 4: ROC for AlexNet on Ima-
geNet with weight-based joint simi-
larity.
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Figure 5: Detection accuracy comparison under different
defense models.
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(a) Linear model.
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(b) Random forest.

Figure 6: Impact of training set size on the AUC.

targeted attacks are almost co-located, which indicates that it
fails to catch the difference between them and leads to its low
detection accuracy of untargeted attacks. Fig. 3c shows the
t-SNE 2D embedding of effective path similarity on ResNet-
50. The boundary between original images and adversarial
images is fuzzier than that on AlexNet, but original images
still have different distribution compared with adversarial
images.

4. Evaluation on ResNet-50
In this section, we show further evaluation results on

ResNet-50 which is not included in the submitted paper.
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Figure 7: Impact of attack number in the training set.
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Figure 8: Effective path layer number impact on AUC.

4.1. Detection Accuracy

Fig. 5 shows the detection accuracy of effective path
under different defense models. For all of the mentioned at-
tacks, we find that random forest performs the best while the
linear model performs worst among all models. However, the
gap between random forest and linear model is very small,
which indicates that effective path can achieve comparable
detection performance using simple and highly interpretable
way on deep and complex networks like ResNet-50.

4.2. Training Size

We choose the linear model and random forest model
as representations to study how the size of the training set
impacts the detection accuracy on ResNet-50. Fig. 6 shows
the difference between the simple linear model and complex
random forest model. For the linear model, the detection
accuracy stabilizes with a small number of training samples
(around 400 images). For the random forest model, the detec-
tor requires much larger training set (around 2500 images),
meanwhile achieves much better detection accuracy, which
indicates that random forest model can utilize more features
in the effective path. Compared with AlexNet, both linear
model and random forest model requires more training sam-
ples to be stable, which can be attributed to the fact that
ResNet-50 has much more layers than AlexNet that provide
useful features for detection.

4.3. Generalizability

Fig. 7 shows the experiment results of generalizability
on ResNet-50 when adding the adversarial samples in the
order of legend shown in the right. For both linear model and
random forest model, our work generalizes well to unseen
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Figure 9: Effective path’s density and class-wise path similarity in the training process.
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Figure 10: Per-layer density of effec-
tive paths in LeNet.
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Figure 11: Per-layer density of effective paths in ResNet-50. Layers in ResNet-50 is
organized into 3-layer bottleneck blocks, which is split by dashed lines.

attacks because effective path captures their common behav-
ior. Compared with AlexNet, our method achieves the same
level of generalizability on much more complex networks.

4.4. Layer Sensitivity

We study the layer number’s impact on the adversarial
sample detection accuracy on ResNet-50 and show the result
in Fig. 8. For both linear model and random forest, we
observe that the AUC performance for all attacks saturates
within 10 layers, which is a small portion of the whole 50
layers. This layer sensitivity insight leads to the significant
speedup of extraction by only extracting just enough layers
instead of all layers, which is described in the submitted
paper.

5. Further Study of Neural Network Inter-
pretability

We further study how the training process and different
network structure impacts the path specialization. In the next,
we study how the training process and different network
structures impact the path specialization.

5.1. Training Process

We study how the training process transforms a random-
ized network to the final state from the perspective of the
effective path. Specifically, we extract the effective path for
each class at different training stages. Through the analysis,
we find that the training process contains three distinctive
phases with different path’s density and similarity trend,
which share similar insights from the previous work using
information bottleneck theory to explain training process [1].

Fig. 9 shows training process for ResNet. We choose
different stages in training and show the class-wise path



similarity in the form of box-plot, on top of which we also
overlay the path density and prediction accuracy. In the first
phase, the density of synapses and weights in the effective
paths stays the same while their similarity increases. In the
beginning, the network is in a randomized state and simply
tries to memorize the input data.

In the second phase, the density of both synapses and
weights decrease rapidly. The similarity of the synapses stays
relatively the same while the similarity of weights decreases.
In this phase, the network mainly performs compression,
and the path specialization mainly manifests in the form
of weights. In other words, the network tries to use class-
specific features extracted by different convolutional filters
to increase the specialization degree.

In the third phase, the synapse density stops to decrease
but weight density starts to increase. Meanwhile, weight
similarity continues to decrease. In this phase, the network
compression stops and mainly relies on path specialization
(via weight) to increase the prediction accuracy. The path
specialization even causes the weight density increases a bit.

In summary, we find that the training process contains
mainly three phases, the first two of which conforms to the
memorization and compression phase identified by the prior
work [1]. The second phase performs compression (less
density) and path specialization (less similarity), while the
third phase mainly includes the path specialization. After
these phases, the network is transformed into a state with
sparse and distinctive paths with great inference capability.

5.2. Network Structure

After establishing the effective path as a great indicator of
the neural network’s inference performance, we study how
the network structure affects the effective path characteris-
tics.

Fig. 10 shows the per-layer path density in LeNet. We ob-
serve the first convolutional layer has a much higher density
compared to the following layers, which matches with the es-
tablished knowledge that the shallow layers in a CNN extract
high-level features that are shared by different classes.

CNN designers have found using a deeper network can
increase the prediction accuracy to a certain degree. How-
ever, the accuracy stops to increase after a certain number
of layers owing to the vanishing gradient in the training pro-
cess. As such, the ResNet structure with skip connection
was proposed to overcome this difficulty. Fig. 11 shows the
per-layer path density for ResNet-50. Not only the first two
layers still have higher density, but also layers before a skip
connection also have high density. This suggests that skip
connection helps not only the gradient propagation but also
the effective paths formation. In the end, ResNet is able to
converge and achieve great prediction performance.
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