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1. Model Training

During training, we unroll each model so that it can
handle multiple frames at once. Each model is first pre-
trained in Image Mode where we present a single image
or frame at each time instant to the model. This implies
multiple applications of PAF/KP stages to the same frame.
We train with COCO, MPII and PoseTrack datasets with a
batch distribution of 0.7, 0.2 and 0.1, respectively, matching
dataset sizes, where each batch consists of images or frames
from one dataset exclusively. We use the head bounding
box information in MPII and Posetrack datasets to mask
out the eyes/nose/ears in the background heatmap chan-
nel when considering the MPII and PoseTrack batches, and
mask out the neck and top head positions using the anno-
tated eyes/nose/ears keypoints for COCO batches. The net
is input images of 368 × 368 dimensions and has scaling,
rotation and translation augmentations, where regions not
annotated are masked out. Heatmaps are computed with an
`2 loss with a stride of 8 resulting in 46 × 46 dimensional
heatmaps. In topology (b) and (c), we initialize the TAF
with PAF, and zeros for (a). We train the net for max of
400k iterations.

Param Image Mode Video Mode
Input Resolution 368x368 368x368
Heatmap Resolution 46x46 46x46
Data Dist. (COCO, MPII, PT) 0.7,0.2,0.1 0.4,0.1,0.5
Frame Skip Augmentation - 3
Scaling [0.7x, 1.3x] [0.7x, 1.3x]
Rotation [−30◦, 30◦] [−20◦, 30◦]
Translation [−30, 30] [−50, 50]
VGG Learning Rate 0.00004 0.0
PAF/TAF/KP Learning Rate 0.00008 0.00004
Solver Adam Adam
Momentum and Decay β1, β2 0.9, 0.999 0.9, 0.999
Decay 0.0005 0.0005
Step [150k, 250k, 360k] [100k, 200k, 250k]
Step Size 0.5 0.5
Total Epochs 400k 300k

Table 1: Training Parameters for both Image Mode and
Video Mode

Next, we proceed training in the Video Mode where we
expose the network to video sequences. For static image
datasets including COCO and MPII, we augment data with
video motion sequences by synthesizing motion with scal-
ing, rotation and translation over the unroll count. We train
COCO, MPII and PoseTrack in Video Mode with a batch
distribution of of 0.4, 0.1 and 0.5, respectively. Moreover,
we also use skip-frame augmentation for video-based Pose-
Track dataset, where some of the randomly selected se-
quences skip up to 3 frames. We lock the weights of VGG
module in Video Mode and only train the STAFs and key-
points blocks. For Model I, we only trained the TAFs block
when training on videos. For Model II, we trained PAFs,
keypoints and TAFs for 5000 epochs, then locked PAFs and
keypoints before training TAFs only. In Model III, both
STAFs and keypoints were kept unlocked and were trained
for 300k iterations.

1.1. Inference and Tracking

The method described till now predicts heatmaps of key-
points and STAFs at every frame by running CNNs asso-
ciated with each module while passing required data com-
puted from previous frame. Next, we present the framework
to perform pose inference as well as tracking across frames
given the output heatmaps. Let the inferred poses at time t
and t− 1 be given by:

Pt = {Pt,1,Pt,2, . . . ,Pt,N},
Pt−1 = {Pt−1,1,Pt−1,2, . . . ,Pt−1,M}, (1)

where the second superscript indexes over people in each
frame. Each pose at a particular time Pt,n consists of up to
K keypoints post inference, i.e., Pt,n includes only those
keypoints that become part of a pose:

Pt,n = {Kt,n

1 ,K
t,n

2 , . . . ,K
t,n

K }. (2)

The detection and tracking procedure begins with local-
ization of keypoints at time t. The inferred keypoints K

t

are obtained by rescaling the heatmaps to match the origi-
nal image resolution followed by non-maximal suppression.
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Algorithm 1 : Estimation and tracking of keypoints and
STAFs
Input: Kt,Lt,Rt, and Pt−1 with unique ids
Output: Pt with ids

1: procedure INFERPOSES()
2: Compute L

t
given K

t
, Lt and L̈

3: Compute R
t

given K
t
, Rt, Pt−1 and R̈

4: Sort L
t

and R
t

by score
5: Initialize empty map of people Pt

6: for every L
t,n

k→k′ in L
t do

7: If k and k′ unassigned; add new Pt,n

8: If k or k′ assigned; add to existing Pt,n

9: If k and k′ assigned; update score of Pt,n

10: If k assigned to Pt,n and k′ assigned to Pt,n′

11: & Pt,n and Pt,n′
lack opposing points;

12: merge Pt,n and Pt,n′
.

13: end for
14: for Pt,n in Pt do
15: for K

t,n
in Pt,n do

16: Find R
t

with the highest score; copy id
17: end for
18: Update Pt,n with the most frequent id
19: end for
20: If insufficient keypoint matches for Pt,n;
21: initialize tracklet
22: Remove Pt−1,n if no association made
23: end procedure

Then, we infer PAF and TAF weights between all possible
pairs of keypoints in each frame defined by the given topol-
ogy, i.e.,

L
t

k→k′ω
(
K

t

k,K
t

k′

)
, R

t

k→k′ (3)

where the function ω(·) samples points between the two ar-
gument keypoints, computes the dot product between direc-
tional vector among the two points and the mean vector of
the sampled points. The inference of PAF, L

t
, and TAF,

R
t
, weights is constrained by the spatio-temporal topology,

where the spatial and temporal constraints are encoded in
tables L̈ and R̈, respectively.

max

(
N∑
t

K∑
k

(
L
t,n

k→k′ +R
t

k→k′

))
(4)

Overall, we wish to generate a set of people Pt with
ids that maximizes the connection scores between their
keypoints pairs (K

t−1,n
k ,K

t,n

k′ ), and temporal connections
given previous keypoints K

t−1,n
from tracklets Pt−1,n

given an association.
To do this, both the inferred PAF and TAF weights are

computed then sorted by their scores before inferring the

C

D

A

B
E

G

F

H

Assume we are constructing a person, starting at Node A. We are confused about moving 
either to B or E, since their scores were sorted closely in PAF. 

We first select E, and select the best TAF linking it, going to F. We know F belongs to person A, 
so we go to G. Then we sample the TAF between G and A, since transitivity only exists between 
those limbs. We see the score is lower

We then select B, and select the best TAF linking it, going to C. We know C belongs to person B, 
so we go to D. Then we sample TAF between D and A. We see the score is higher.

Hence, we select B to be our next point in the graph.

(a) (b) (c) (d)

Figure 1: (a) This figure shows how the transitivity prop-
erty can be used to improve scores of ambiguous PAFs. In
this case, there are two possible wrist locations: one cor-
rect on the right and an incorrect on the left from an adja-
cent person. After reweighing PAFs through TAFs, the PAF
pointing to the correct wrist receives a higher score. (b)-(d):
After using transitivity, the incorrect PAFs from the leg of
the occluded person in yellow are down-weighted resulting
in correct pose estimation for the person in cyan.

complete poses, Pt, and associating them across frames
with unique ids. We perform this in a bottom-up style as
described in Algorithm 1 where we utilize R

t
and Pt−1 to

determine the update, addition or deletion of tracklets. Go-
ing through each PAF in the sorted list, (i) we initialize a
new pose if both keypoints in the PAF are unassigned, (ii)
add to existing pose if one of the keypoints is assigned, (iii)
update score of PAF in pose if both are assigned to the same
pose, and (iv) merge two poses if keypoints belong to dif-
ferent poses with opposing keypoints unassigned. Finally,
we assign id to each pose in the current frame with the most
frequent id of keypoints from the previous frame. This is
done over all tracklets and people very quickly as it is done
on the GPU.

Furthermore, we make use of past poses Pt−1 and TAFs
R

t
to reweigh PAFs. For cases where we have an ambigu-

ous PAFs (Alg. 1, 7:) as seen in Figure 1, we use transitivity
that reweighs PAFs to disambiguate between them. In this
figure, keypoint {A} - an elbow - is under consideration,
with wrists {B}/{E} as two possibilities. We select the
strongest TAFs where {A,B,C,D,A} has a higher weight
than {A,E, F,G,A}.

L
t,n

k→k′ = (1− α)ω(Kt−1,n
k ,K

t,n

k′ ) + α ∗ ω(Kt,n

k ,K
t,n

k′ ).
(5)

2. Additional Experiments
We present some experiments that were otherwise not

displayed in detail in the main paper.
For the sake of completion, we first report results on

the COCO dataset in Table 2. Despite using single set of
weights for all the stages, we were able to get close results.
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Our network is designed to be lightweight and work in a
recurrent fashion, so our main reference point is still the
Posetrack datasets.

Method AP AP50 AP75 APM APL

Top-Down Approaches
Megvii [2] 73.0 91.7 80.9 69.5 78.1
G-RMI [6] 71.0 87.9 77.7 69.0 75.2
Mask R-CNN [3] 69.2 90.4 76.0 64.9 76.3

Bottom-Up Approaches
PersonLab [5] 68.7 89.0 75.4 64.1 75.5
Associative Emb. [4] 65.5 86.8 72.3 60.6 72.6
OpenPose 2018 [1] 64.4 86.5 70.2 61.5 68.8
Proposed 61.5 82.2 67.1 58.5 66.7

Table 2: Results on the COCO test-dev dataset. Top: top-
down results. Bottom: bottom-up results (top methods
only). AP50 is for OKS = 0.5, APL is for large scale per-
sons.

Filter Sizes: We observed that having each 7 × 7 filter re-
placed with a three 3 × 3 filter resulted in better accuracies,
especially for knees and ankles. The results are shown in
Table 3. We run single frame inference on Model I and
find the 3 × 3 to be 2% more accurate than 7 × 7, with
significant boosts in average precision of knee and ankle
keypoints.

Figure 2: Types of filters usued

Method Hea Sho Elb Wri Hip Kne Ank mAP fps
Model I - 3x3 75.7 73.9 67.8 56.3 66.8 62.3 56.9 66.3 14
Model I - 7x7 76.0 73.3 66.4 54.0 63.4 59.2 52.2 64.3 10

Table 3: This table shows results for experiments with the
two filter sizes on PoseTrack 2017 validation set.

Recurrence of Keypoints Module: To verify that the net-
work was indeed benefiting from ingesting previous frame
heatmaps, we explicitly train a model where the keypoint
module was connected to current PAF module in an aux-
iliary fashion and did not receive previous heatmaps (first
row of Table 4). The second row shows the case where key-
point module was connected to ingest output heatmaps from

previous frames. The result is 2.1% improvement at single
scale on the PoseTrack 2017 validation set using Model II
with 7 × 7 filter size.

Method Hea Sho Elb Wri Hip Kne Ank mAP fps
KP Auxiliary 72.3 71.2 63.9 51.4 60.1 56.3 50.0 61.5 28
KP Connected 76.2 71.6 64.5 51.9 62.6 59.3 52.5 63.6 27

Table 4: Performance using Model II where the keypoint
module does not take feedback from previous heatmaps
(auxiliary), and when it does ingest previous heatmaps (con-
nected).

STAF Topology: We experimented with Topology A, B
and C. Topology B proved to be better than A due to it’s
ability to preserve information even during minimal mo-
tion, lending itself better to the recurrent structure of our
network. It especially performed better during jittery cam-
era motion, or during crowded scenes with several people.
Topology C, which does not consist of any current frame
spatial information, was difficult to train and resulted in an
MAP that was about 8% lower. This was mainly because
we had to construct a person during the first frame, or dur-
ing a new person appearance, and simply propagate it using
the TAF, which proved to be less reliable than extracting
poses on every frame with PAF/TAF, then propagating it
with TAF.

3. Implementation
Training: We train on 4 Titan XP in Caffe. Testing: We

test on a single 1080 Ti, and i7 7800X. We write our own
code in C++ and CUDA.
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