
Events-to-Video: Bringing Modern Computer Vision to Event Cameras

—Supplementary Material—

Henri Rebecq † René Ranftl ‡ Vladlen Koltun ‡ Davide Scaramuzza †

A. Architecture Details

Our reconstruction network is presented in detail in

Fig. 1. It is essentially a UNet architecture [9], composed

of multiple convolutional layers. Four encoder layers (blue)

are followed by two residual blocks (yellow), four decoder

layers (red), and a final image prediction layer. In addi-

tion, symmetric skip connections are used. The encoders

are strided convolutional layers (stride of 2), with a kernel

size of 5. The number of output channels of the first en-

coder layer (↓conv1) is 64, and is doubled for every sub-

sequent encoder layer, i.e. the sequence of output channels

is (64, 128, 256, 512). Both residual blocks have 512 hid-

den layers, and a kernel size of 3. Batch normalization is

used within the residual blocks (applied before the activa-

tion). The decoders are transposed convolution layers, with

a kernel size of 5. The number of output channels of the

decoders starts at 256 (↑conv1), and is divided by two for

every subsequent decoder, i.e. the sequence of output chan-

nels is (256, 128, 64, 32)). The kernel size for the residual

blocks is 3. ReLU is used as activation everywhere, except

for the last image prediction layer, where a sigmoid acti-

vation is used instead. The skip connections are based on

concatenation.

B. Initialization Phase

By analyzing the initialization phase (i.e. when only few

events have been triggered yet) in detail we gain interesting

insight into how our network operates. We see significantly

different behaviour when compared to prior approaches that

are based on direct event integration. Fig. 2 compares image

reconstructions from our approach, HF, and MR during the

initialization phase. We specifically examine the interval

from 0 s to 0.5 s after the event cameras has been started.

HF and MR, which rely on event integration, can only

recover the intensity up to the initial (unknown) image I0
(i.e. they can only recover Î ≈ I − I0), which results in
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an “edge” image which does not capture the appearance of

the scene correctly. In contrast, our method successfully

leverages deep priors to reconstruct the scene despite the

low number of events that is available.

By contrast, our method is able to leverage deep priors on

what a scene might look like (learned, first, from the large

amount of simulated event data, and second, embedded in

the perceptual loss used (LPIPS)) to reconstruct the scene

reasonably well even with a low number of events.

C. Why Use Synthetic Training Data?

Here, we expand on the reasons that motivated us to train

our reconstruction network using synthetic event data. First,

simulation allows to capture a large variety of scenes and

motions at very little cost. Second, a conventional camera

(even a high quality one) would provide poor ground truth

in high-speed conditions (motion blur) and HDR scenes,

which are the conditions in which event sensors excel; by

contrast, synthetic data does not suffer from these issues.

Last but not least, simulation allows to randomize the con-

trast thresholds of the event sensor, which increases the abil-

ity of the network to generalize to different sensor configu-

rations (contrast sensitivity). To illustrate this last point, we

show in Fig. 3 (left) what happens when training the net-

work on real event data from an event camera (specifically,

the sequences from the Event Camera Dataset [4] already

presented in the main paper, which were recorded with a

DAVIS240C sensor), and evaluating the trained network on

data coming from a different event sensor (specifically, the

‘outdoors day1‘ sequence from the MVSEC dataset [13],

which was recorded with a mDAVIS346 sensor): the re-

construction suffers from many artefacts. This can be ex-

plained by the fact that the events from the mDAVIS346

sensor have statistics that are quite different from the train-

ing events (DAVIS240C): the set of contrast thresholds are

likely quite different between both sensors, and the illumi-

nation conditions are also different (outdoor lighting for the

MVSEC dataset versus indoor lighting for the training event

data). By contrast, the network trained on simulated event

data (Fig. 3, right) generalizes well to the event data from

the mDAVIS346, producing a visually pleasing image re-

construction.
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Figure 1. Detailed architecture of our reconstruction network. It is a UNet architecture [9], composed of multiple convolutional layers.

Four encoder layers (blue) are followed by two residual blocks (yellow), four decoder layers (red), and a final image prediction layer. In

addition, symmetric skip connections are used. More details about each layer are provided in the text.

(a) HF (b) MR (c) Ours (d) Ground truth

Figure 2. Analysis of the initialization phase (reconstruction from few events). This figure shows image reconstructions from each method,

0.5 seconds after the sensor was started. HF [11] and MR [5], which are based on event integration, cannot recover the intensity correctly,

but only the intensity difference , resulting in “edge ” images (first and second row), or severe “ghosting” effects (third row, where the trace

of the dartboard is clearly visible). In contrast, our network successfully reconstructs most of the scene accurately, even with a low number

of events.

Figure 3. Reconstruction from (i) a network trained only on real

event data from the DAVIS240C sensor (left), and (ii) a network

trained only on simulated event data (right). This sequence is from

the MVSEC dataset, and was recorded with a mDAVIS346 sensor.

D. Latency and Performance Considerations

D.1. Latency

Our method operates on windows containing a fixed

number of events, which incurs some latency compared to

approaches that operate in an event-by-event fashion. The

amount of latency depends on the duration of the event win-

dows. Therefore, it varies through time, depending on the

event rate. Since we process events in windows with a con-

stant number of events, our method is data-driven, which

means that the latency diminishes when the event rate in-

creases, i.e. when something of interest occurs in the scene.

Fig. 4 shows the distribution of the latency (in other words,

the durations of the event windows) for the sequences used

in our qualitative evaluation (Section 4 in the main paper):

the latency is in the range of 3ms to 300ms, with a me-



dian value of 26ms. We point out that while in this paper

we chose to process windows with a fixed number of events,

our methodology could also be applied to windows of a con-

stant duration (which would require, however, to retrain the

network to operate with such fixed-length windows), yield-

ing a constant, predictable latency, but at the cost of losing

the adaptive output framerate.

D.2. Performance Analysis

In this section, we analyze the performance of our

method, and compare it against HF [11] and MR [5]. Due

to fundamental differences in the way each of these meth-

ods process event data, it is difficult to provide a direct

and fair performance comparison between these three meth-

ods. HF processes the event stream in an event-by-event

fashion, providing (in theory) a new image reconstruction

with every incoming event. However, the raw image recon-

structions from HF need to be filtered (for example, using

a bilateral filter) to obtain results with reasonable quality.

While MR can in principle also operate in an event-by-event

fashion, its best quality results are obtained when it pro-

cesses small batches of events (in our experiments, we used

NMR = 1,000 events per batch), thus limiting the output

framerate. Our method, by contrast, processes the event

stream in large batches of events (we used N = 25,000
events per batch), thus also limiting the output framerate

(i.e. increasing the latency, as analyzed in Fig. 4). In Ta-

ble 1, we report the mean event processing rate (i.e. the total

time it takes to process a dataset divided by the number of

events in the dataset) for each method. As a complemen-

tary performance measure, we also report the mean “frame

synthesis time”, which we define as follows:

• for our method, it is the time it takes to process N

events.

• For MR, it is the time it takes to process NMR events.

• For HF, it is in theory the time it takes to process a sin-

gle event (since every new event triggers a new recon-

struction), plus the image filtering time. However, the

time to process a single event is negligible compared to

the filtering time (multiple orders of magnitude less),

hence we report only the filtering time. As described

in the main text, we used a bilateral filter with filter

size d = 5 and σ = 25).

We ran our method and MR on an NVIDIA GeForce RTX

2080 Ti GPU, and HF on an Intel Core i9-9900K @ 3.60

GHz CPU.

Discussion We point out that our method synthesizes

fewer images per second than MR and HF, hence the num-

bers in Table 1 should be interpreted carefully. That being

Event rate (Mev/s) Frame synthesis time (ms)

HF 14.30 0.75 (filter)

MR 1.19 0.84

Ours 7.94 3.15

Table 1. Performance comparison between our method, HF, and

MR.

said, our method is fairly competitive in terms of perfor-

mance, and, importantly, can easily run in real-time, while

providing state of the art reconstructions in terms of quality.

E. Additional Results

E.1. Video

We strongly encourage the reader to view the supple-

mental video, which contains:

• Video reconstructions from our method on various

event datasets, with a visual comparison to several

state of the art methods.

• Video of the VINS-Mono visual-inertial odometry al-

gorithm [7] running on a video reconstruction from

events.

• Qualitative results on two additional downstream ap-

plications that were not presented in the main paper:

object detection (based on YOLOv3 [8]), and monoc-

ular depth prediction (based on MegaDepth [3]). We

point out that neither of these tasks have ever been

shown with event data before this work.

E.2. Results on Synthetic Event Data

We show a quantitative comparison of the reconstruction

quality of our method as well as MR and HF on synthetic

event sequences in Table 2. We present qualitative recon-

struction results on this dataset in Fig. 5. All methods per-

form better on synthetic data than real data. This is expected

because simulated events are free of noise. Nonetheless,

the performance gap between our method and the state of

the art is preserved, and even slightly increases (24% im-

provement in SSIM, 56% decrease in LPIPS). We note that

perfect reconstruction, even on noise-free event streams is

not possible, since image reconstruction from events is only

possibly up the the quantization limit imposed by the con-

trast threshold of the event camera.

E.3. Additional Qualitative Results on Real Data

Fig. 6 shows qualitative results on sequences from the

Event Camera Dataset [4] (which we used for our quanti-

tative evaluation). Fig 7 shows qualitative results on the

sequences introduced by Bardow et al. [1]. Figs. 8 and 9

present HDR reconstruction results on sequences from the
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Figure 4. Distribution of latency for each dataset used in our quantitative evaluation.

Dataset
MSE SSIM LPIPS

HF MR Ours HF MR Ours HF MR Ours

synthetic 0 0.08 0.06 0.02 0.54 0.61 0.83 0.49 0.47 0.26

synthetic 1 0.15 0.14 0.06 0.38 0.45 0.60 0.54 0.56 0.37

synthetic 2 0.07 0.08 0.02 0.60 0.68 0.82 0.42 0.42 0.26

synthetic 3 0.07 0.05 0.04 0.57 0.66 0.75 0.45 0.43 0.33

synthetic 4 0.08 0.06 0.02 0.62 0.67 0.85 0.41 0.42 0.25

synthetic 5 0.08 0.08 0.02 0.50 0.61 0.74 0.53 0.54 0.36

synthetic 6 0.07 0.04 0.03 0.56 0.65 0.77 0.44 0.48 0.30

Mean 0.09 0.07 0.03 0.54 0.62 0.77 0.47 0.47 0.30

Table 2. Comparison of image quality with respect to state of the art on synthetic event sequences.

MVSEC dataset [13]. Further results are shown in the sup-

plementary video which conveys these results in a better

form than still images.

F. Object Classification

Below we detail the exact modalities of our reconstruc-

tion method for each of the dataset which we used for our

evaluation of object classification (Section 5.1 in the paper),

as well as the specific architectures used and training modal-

ities.

N-MNIST. To reconstruct images with our networks, we

used an event window of N = 1,000 events. We passed

every event sequence into our network, resulting in a video,

from which we keep the final image as input for the clas-

sification network. To match the images from the original

MNIST dataset, we additionally binarize the reconstructed

image (whose values lie in [0, 1]) with a threshold of 0.5.

The train and test images were normalized so that the mean

value of each image is 0.1307 and the variance 0.3081.

We used the official train and test split provided in the M-

NNIST dataset. As there is no standard state of the art ar-

chitecture for MNIST, we used a simple CNN architecture

as our classification network, composed of the following

blocks:

• 2D convolution (stride: 5, output channels: 32) + ReLU

• 2D convolution (stride: 5, output channels: 64) + ReLU

• 2D max pooling (size: 2) + Dropout

• Fully connected layer (output size: 128 neurons) + ReLU

• Fully connected layer (output size: 10 neurons)

We used the cross entropy loss, and trained the network

for 15 epochs using the ADAM optimizer, with a learning

rate of 0.001.

N-CARS. We used windows of events with a fixed tem-

poral size of 20ms, and used the last reconstructed image

from the video as input to the classification network. We

used the official train and test split provided by the N-CARS

dataset. We used a ResNet18 [2] architecture (with an ad-

ditional fully connected final layer with 2 output neurons),

initialized with weights pretrained on ImageNet [10], and

fine-tuned the network using the reconstructed images from

the training set for 20 epochs, using SGD with a learning

rate of 0.001 (decayed by factor of 0.1 every 7 epochs), and

momentum of 0.1.

N-Caltech101. For image reconstruction, we used windows

of N = 10,000, events and used the last reconstructed im-

age as input to the classification network. Since there is no

official train and test split for the N-Caltech101 dataset, we



(a) Events (b) HF (c) MR (d) Ours (e) Ground truth

Figure 5. Qualitative comparison of our reconstruction method with HF [11] and MR [5] on synthetic sequences from the validation set.

Note our method is able to reconstruct fine details such as the bear’s fur (last row), which competing methods are not able to preserve.



(a) Scene Preview (b) Events (c) HF (d) MR (e) Ours (f) Ground truth

Figure 6. Qualitative comparison of our reconstruction method with two recent competing approaches, MR [5] and HF [11], on sequences

from [4], which contain ground truth frames from a DAVIS240C sensor. Our method successfully reconstructs fine details (textures in

the second and third row) compared to other methods, while avoiding ghosting effects (particulary visible in the shapes sequences on the

fourth row).

split the dataset randomly into two third training sequences

(5,863 sequences) and one third testing sequences (2,396
sequences), following the methodology used by HATS [12].

The train and test images were converted to 3-channel

grayscale images (i.e. the three channels are the same), and

normalized so that the mean value of each image is 0.485
and the variance 0.229. We also performed data augmen-

tation at train time (random horizontal flips, and random

crop of size 224). At test time, we resized all the images to

256×256 and cropped the image around the center with a

size of 224. We used a ResNet18 architecture (with an addi-

tional fully-connected final layer with 101 output neurons),

initialized with weights pretrained on ImageNet, and fine-

tuned the network using the reconstructed images from the

training set for 25 epochs using SGD with an initial learning

rate of 0.001 (decayed by a factor of 0.1 every 7 epochs) and

momentum of 0.1. Fig. 10 shows additional reconstruction

examples from the N-Caltech101 dataset.



(a) Events (b) SOFIE [1] (c) HF [11] (d) MR [5] (e) Ours

Figure 7. Qualitative comparison of our reconstruction method with various competing approaches. We used the datasets from [1]. The

dataset does not contain ground truth images, thus only a qualitative comparison is possible. For SOFIE and MR, we used images provided

by the authors, for which the parameters were tuned for each dataset. For HF, we ran the code provided by the authors, manually tuned the

parameters on these datasets to achieve the best visual quality, and additionally applied a bilateral filter to clean the high frequency noise

present in the original reconstructions.



(a) Events (b) VI sensor frame (c) Our reconstruction

Figure 8. Example HDR reconstructions on the MVSEC automotive dataset [13]. The standard frames were recorded with a high-quality

VI sensor with auto-exposure activated. Because the camera is facing directly the sun, the standard frames (b) are either under- or over-

exposed since the limited dynamic range of the standard sensor cannot cope with the high dynamic range of the scene. By contrast, the

events (a) capture the whole dynamic range of the scene, which our method successfully reconstructs to high dynamic range images (c),

allow to discover details that were not visible in the standard frames.



(a) Events (b) VI sensor frame (c) Our reconstruction

Figure 9. Example HDR reconstructions on the MVSEC automotive dataset [13] at night. The standard frames were recorded with a

high-quality VI sensor with auto-exposure activated. Because of low light during the night, the standard frames (b) are severely degraded.

By contrast, the events (a) still can capture the whole dynamic range of the scene, which our method successfully recovers (c), allowing to

discover details that were not visible in the standard frames.



(a) Events (b) Our Reconstruction (c) Original Image

Figure 10. (a) Previews of some event sequences from the N-Caltech101 dataset [6] which features event sequences converted from the

Caltech101 dataset. (b) our reconstructions (from events only) preserve many of the details and statistics of the original images (c). Note

that these datasets feature planar motion (since Caltech101 images were projected on white wall to record the events), which coincides

with the type of motions present in the simulated data, which explains in part the outstanding visual quality of the reconstructions.



G. Visual-Inertial Odometry

Figs. 11, 12 and 13 provide additional results on the

visual-inertial odometry experiments presented in the main

paper. Specifically, they provide, for each sequence used in

our evaluation, the evolution of the mean translation and

rotation error as a function of the travelled distance for

our approach, UltimateSLAM (E+I), and UltimateSLAM

(E+F+I).
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Figure 11. Evolution of the overall mean translation error (in meters) and mean rotation error (in degrees), averaged across all the datasets

used in our evaluation.
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Figure 12. Evolution of the mean translation error (in meters) and mean rotation error (in degrees), as a function of the travelled distance.

Sequences from top to bottom: ’shapes translation’, ’poster translation’, ’boxes translation’, ’dynamic translation’.
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Figure 13. Evolution of the mean translation error (in meters) and mean rotation error (in degrees), as a function of the travelled distance.

Sequences from top to bottom: ’shapes 6dof’, ’poster 6dof’, ’boxes 6dof’, ’dynamic 6dof’, ’hdr boxes’.
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