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Annex: Ablation of terms in the Weighted Hausdorff Distance
In Section 4, we made the following claim:

Claim. Both terms of the Weigthed Hausdorff Distance (WHD) are necessary. If the first term is removed, then px = 1 ∀x ∈
Ω is the solution that minimizes the WHD. If the second term is removed, then the trivial solution is px = 0 ∀x ∈ Ω.

Proof. If the first term is removed and px = 1 ∀x ∈ Ω, then Equation (5) reduces to
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From the definition in Equation (2), ∀x, y ∈ Ω,
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Note that dWH(p, Y )
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> 0 if α > −∞, but the proof holds for any α < 0.
If the second term is removed and px = 0 ∀x ∈ Ω, then Equation (5) reduces to
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