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Abstract

In this supplementary document, we first present details on the network architectures of our disparity decoder in Section 1.

Section 2 discusses the runtime of our method and Section 3 provides additional details on the edge decoder used in our work.

In Section 4 we give additional ablation studies for our method and the used baselines. Finally, we show additional results

in Section 5.

1. Disparity Decoder

The disparity decoder is based on the DispNetS architecture presented in [5]. Table 1 shows the detailed disparity decoder

architecture, where k denotes kernel size, s stride and p padding. Cin and Cout are the number of input and output channels.

up(·) denotes bilinear up-sampling. We use a ReLU layer after each convolutional layer and a scaled sigmoid after each

prediction layer. We do not show them in the table for clarity.

2. Runtime

We evaluated the individual parts of the network for multiple forward passes in Table 2. Note that the network evaluation

(edge decoder and disparity decoder) is the most time consuming part. The geometric loss is only slightly slower than the

photometric loss and adds no drastic overhead in network training.

3. Edge Decoder

We exploit a shallow U-Net architecture for our edge decoder. It is also based on the DispNet architecture [5], but with

fewer layers. Table 3 shows the detailed edge decoder architecture, with k denoting kernel size, s stride, and p padding. Cin

and Cout are the number of input and output channels. up(·) denotes bilinear up-sampling. There is a ReLU layer after each

convolutional layer which we do not show in the table for clarity.

As mentioned in the main paper, we train an edge decoder to predict A′ = LCNǫ(|∇A|), the local contrast normalized

gradient magnitude of the ambient image A. While the edge decoder requires the ambient image A as supervision, this is

easily obtained in practice (recording the scene with the laser projector turned on and off). In particular, our shallow U-Net

generalizes from few training samples: In the experiment, we assume that we have ambient images for 1, 024 short sequences

among the full rendered training dataset of 8, 192 sequences.

Fig. 1 shows an example of an input image I from the test dataset, the edge image A′ and our prediction. We observe that

the edge decoder clearly separates edge from non-edge regions.

4. Additional Ablation Studies

In this section we present additional ablation studies for our method and the utilized baselines. Section 4.1 demonstrates

the correlation between the photometric loss and some of the metrics that we evaluated on. In Section 4.2 we show an

∗ Joint first authors with equal contribution.



layer name k × k, p, s Cin Cout input name output name

conv1
7× 7, 3, 2 2 32 - -

7× 7, 3, 1 32 32 - out conv1

conv2
5× 5, 2, 2 32 64 out conv1 -

5× 5, 2, 1 64 64 - out conv2

conv3
3× 3, 1, 2 64 128 out conv2 -

3× 3, 1, 1 128 128 - out conv3

conv4
3× 3, 1, 2 128 256 out conv3 -

3× 3, 1, 1 256 256 - out conv4

conv5
3× 3, 1, 2 256 512 out conv4 -

3× 3, 1, 1 512 512 - out conv5

conv6
3× 3, 1, 2 512 512 out conv5 -

3× 3, 1, 1 512 512 - out conv6

conv7
3× 3, 1, 2 512 512 out conv6 -

3× 3, 1, 1 512 512 - out conv7

upconv7 3× 3, 1, 2 512 512 out conv7 out upconv7

concat - - - out upconv7, out conv6 concat7

iconv7 3× 3, 1, 1 1024 512 concat7 out iconv7

upconv6 3× 3, 1, 2 512 512 out conv6 out upconv6

concat - - - out upconv6, out conv5 concat6

iconv6 3× 3, 1, 1 1024 512 concat6 out iconv6

upconv5 3× 3, 1, 2 512 256 out conv5 out upconv5

concat - - - out upconv5, out conv4 concat5

iconv5 3× 3, 1, 1 512 256 concat5 out iconv5

upconv4 3× 3, 1, 2 256 128 out conv4 out upconv4

concat - - - out upconv4, out conv3 concat4

iconv4 3× 3, 1, 1 256 128 concat4 out iconv4

predict disp4 3× 3, 1, 1 128 1 out iconv4 disp4

upconv3 3× 3, 1, 2 128 64 out conv3 out upconv3

concat - - - out upconv3, out conv2, up(disp4) concat3

iconv3 3× 3, 1, 1 129 64 concat3 out iconv3

predict disp3 3× 3, 1, 1 64 1 out iconv3 disp3

upconv2 3× 3, 1, 2 64 32 out iconv3 out upconv2

concat - - - out upconv2, out conv1, up(disp3) concat2

iconv2 3× 3, 1, 1 65 32 concat2 out iconv2

predict disp2 3× 3, 1, 1 32 1 out iconv2 disp2

upconv1 3× 3, 1, 2 32 16 out iconv2 out upconv1

concat - - - out upconv1, out conv1, up(disp2) concat1

iconv1 3× 3, 1, 1 33 16 concat1 out iconv1

predict disp1 3× 3, 1, 1 16 1 out iconv1 disp1

Table 1: Architecture of Disparity Decoder. k denotes kernel size, s stride and p padding. Cin and Cout are the number of

input and output channels

LCN Edge Dec. Disp. Dec. LP LD LG

3.19 15.00 21.51 4.58 1.33 6.85

Table 2: Timings [ms]. Average of single sample forward passes.

ablation study of the disparity decoder. In Section 4.3 we evaluate our method and the baselines when applied with smooth

post-processing. Finally, Section 4.4 provides hyper-parameter tuning experiments and the influence of post-processing on

the HyperDepth [2] baseline used in our evaluations.

4.1. Correlation of Photometric Loss

Note that our self-supervised approach does not have access to ground truth geometry. We thus select the network pa-

rameters from all training epochs by minimizing the average photometric error on a validation set with 512 samples. In this

section, we demonstrate that the photometric loss is well correlated to our evaluation metrics and is thus suitable as a proxy

metric. Fig. 2 illustrates the photometric loss and o(t) when training our model using only the photometric loss LP . Each dot

represents the photometric loss (x-axis) and the corresponding metric (y-axis) at one particular epoch. We fit a line to this

data using linear regression, and show the correlation coefficient above each sub-figure (here 1 represents maximal positive



layer name k × k, p, s Cin Cout input name output name

conv1
7× 7, 3, 2 2 32 - -

7× 7, 3, 1 32 32 - out conv1

conv2
5× 5, 2, 2 32 64 out conv1 -

5× 5, 2, 1 64 64 - out conv2

conv3
3× 3, 1, 2 64 128 out conv2 -

3× 3, 1, 1 128 128 - out conv3

upconv3 3× 3, 1, 2 128 64 out conv3 out upconv3

concat - - - out upconv3, out conv2 concat3

iconv3 3× 3, 1, 1 128 64 concat3 out iconv3

predict edge3 3× 3, 1, 1 64 1 out iconv3 edge3

upconv2 3× 3, 1, 2 64 32 out iconv3 out upconv2

concat - - - out upconv2, out conv1, up(edge3) concat2

iconv2 3× 3, 1, 1 65 32 concat2 out iconv2

predict edge2 3× 3, 1, 1 32 1 out iconv2 edge2

upconv1 3× 3, 1, 2 32 16 out iconv2 out upconv1

concat - - - out upconv1, out conv1, up(edge2) concat1

iconv1 3× 3, 1, 1 33 16 concat1 out iconv1

predict edge1 3× 3, 1, 1 16 1 out iconv1 edge1

Table 3: Architecture of Edge Decoder. k denotes kernel size, s stride and p padding. Cin and Cout are the number of input

and output channels, respectively.

(a) Input I (b) Ground truth A
′ (c) Prediction

Figure 1: Qualitative Results of Edge Decoder.

(a) o(0.1) (b) o(0.5) (c) o(1) (d) o(2) (e) o(5)

Figure 2: Correlation of Photometric Loss and Evaluation Metrics. For each threshold t, we show the photometric loss

(x-axis) wrt. the corresponding metric (y-axis) across epochs as data points. We show the correlation coefficient above each

figure, where 1 denotes maximal positive linear correlation.

linear correlation and 0 denotes no linear correlation). Fig. 2 suggests that the photometric loss is highly correlated with o(t)
across different thresholds. Therefore, it is a viable criterion for model selection.



depth o(0.1) o(0.5) o(1) o(2) o(5)

1 0.9231 0.6717 0.5303 0.4071 0.1989

2 0.8935 0.5768 0.4477 0.3468 0.1684

3 0.5646 0.2742 0.2299 0.1976 0.1502

4 0.5196 0.1999 0.1393 0.1064 0.0804

5 0.3636 0.1179 0.0663 0.0400 0.0224

6 0.4151 0.1207 0.0645 0.0361 0.0169

7 0.3745 0.1084 0.0575 0.0320 0.0154

Table 4: Ablation of U-Net architecture. A higher depth value indicates a larger receptive field of the network, with depth

= 7 being the architecture presented in Table 1.

o(0.5) o(1) o(2) o(5) ou(1) ou(5)

Block Matching 7.84 7.20 7.06 6.83 4.44 4.23

Block Matching + MF 6.78 6.15 5.98 5.71 3.57 3.32

FastMRF 12.07 8.36 6.71 5.14 5.25 3.57

FastMRF + MF 12.00 8.34 6.69 5.12 5.23 3.57

HyperDepth 15.01 12.63 11.83 11.49 7.39 6.73

HyperDepth + MF 9.09 7.41 6.68 6.20 3.97 3.31

Ours 6.77 3.88 2.57 1.63 1.75 0.70

Ours + MF 6.28 3.62 2.46 1.58 1.64 0.69

Table 5: Quantitative Results on Synthetic Data with Median Filtering.

4.2. Ablation of Disparity Decoder

In the following evaluation we show that a large receptive field as present in our disparity decoder (Table 1) is needed

for accurate disparity estimation. For this evaluation we consecutively remove lower resolution parts of the network. We

train the network on a 100 rows crop of our train dataset and evaluate on the same 100 rows of the test dataset. The results

are summarized in Table 4. We can observe that the network performance gradually improves by adding layers at lower

resolutions that capture a larger receptive field. We also tried to train the network with CoordConvs [4] and BatchNorm [3],

but did not observe any improvements on the test metrics.

4.3. Smooth Post­processing

We observe that some of our baselines produces a random noise in the prediction, where the results might be improved

with a smooth post-processing. For a fair comparison, we apply 5 × 5 median filtering to all methods in Tab. 3 of the main

paper. The results are shown in Table 5. Note that the smooth post-processing improves the performance of all compared

methods, while our method still performs the best.

4.4. HyperDepth Hyper­Parameters

The most related work to our method is the random forest based HyperDepth [2]. Unfortunately, there is no implemen-

tation available and therefore, we had to implement this method ourselves. We tried to replicate the method as closely as

possible based on the original paper and also communicated with the authors regarding the details. For a fair comparison, we

cross-validated the hyper-parameters on a validation set. In Table 6 we show results varying the total tree depth, the number

of random samples for split node optimization and the tree depth at which we switch from pixel to sub-pixel accuracy. Note

that in our experiments, we obtained better results with deeper trees.

Another set of hyper-parameters involve the post-processing in HyperDepth. In Fig. 3 we show quantitatively and qual-

itatively results for different settings. Note how with different hyper-parameters we can trade accuracy for completeness.

In the evaluation in our main paper we used the hyper-parameters that lead to the smallest harmonic mean of accuracy and

completeness.



o(0.1) o(0.5) o(1) o(2) o(5)

depth=12, samples=1024, switch=6 0.7821 0.3123 0.2212 0.2017 0.1972

depth=12, samples=1024, switch=8 0.7817 0.3156 0.2256 0.2063 0.2015

depth=12, samples=1024, switch=10 0.7801 0.3130 0.2252 0.2061 0.2018

depth=12, samples=4096, switch=6 0.7750 0.3186 0.2350 0.2158 0.2113

depth=12, samples=4096, switch=8 0.7692 0.3028 0.2215 0.2042 0.2002

depth=12, samples=4096, switch=10 0.7694 0.3056 0.2290 0.2133 0.2094

depth=12, samples=16384, switch=6 0.7694 0.3112 0.2361 0.2201 0.2160

depth=12, samples=16384, switch=8 0.7674 0.3177 0.2433 0.2281 0.2237

depth=12, samples=16384, switch=10 0.7670 0.3152 0.2422 0.2273 0.2233

depth=14, samples=1024, switch=8 0.7411 0.2685 0.1991 0.1843 0.1802

depth=14, samples=1024, switch=10 0.7301 0.2567 0.1915 0.1780 0.1741

depth=14, samples=1024, switch=12 0.7423 0.2627 0.1943 0.1790 0.1750

depth=14, samples=4096, switch=8 0.7299 0.2570 0.1921 0.1783 0.1748

depth=14, samples=4096, switch=10 0.7264 0.2546 0.1923 0.1794 0.1760

depth=14, samples=4096, switch=12 0.7309 0.2571 0.1956 0.1830 0.1797

depth=14, samples=16384, switch=8 0.7275 0.2615 0.1987 0.1850 0.1813

depth=14, samples=16384, switch=10 0.7278 0.2691 0.2088 0.1952 0.1920

depth=14, samples=16384, switch=12 0.7349 0.2746 0.2134 0.1997 0.1961

depth=16, samples=1024, switch=10 0.7287 0.2519 0.1887 0.1750 0.1712

depth=16, samples=1024, switch=12 0.7275 0.2490 0.1852 0.1711 0.1674

depth=16, samples=1024, switch=14 0.7311 0.2448 0.1775 0.1632 0.1596

depth=16, samples=4096, switch=10 0.7078 0.2269 0.1704 0.1588 0.1554

depth=16, samples=4096, switch=12 0.7124 0.2293 0.1703 0.1579 0.1548

depth=16, samples=4096, switch=14 0.7197 0.2319 0.1716 0.1586 0.1553

depth=16, samples=16384, switch=10 0.7083 0.2346 0.1784 0.1665 0.1630

depth=16, samples=16384, switch=12 0.7116 0.2360 0.1810 0.1690 0.1656

depth=16, samples=16384, switch=14 0.7147 0.2342 0.1768 0.1644 0.1611

Table 6: Hyper-Parameter Tuning for HyperDepth [2]. We train a random forest with four trees on a single row of the

synthetic dataset. depth denotes the maximal tree depth, samples is the maximal number of training instances sampled to

optimize a given split node, and switch is the tree depth where we switch from integer accuracy to sub-pixel accuracy.

5. Additional Results

5.1. Rendered Data

In this section we show additional qualitative results on our synthetic dataset and the dataset provided by [1]. Fig. 4

depicts additional qualitative results as depth maps on our synthetic dataset for our method, block matching, FastMRF [1],

and HyperDepth [2]. We also show results as 3D point-clouds from Fig. 5 to Fig. 7. For each method we show two point

clouds from different perspectives. Odd rows show the point cloud from the estimated depth map, with green indicating

accurate predictions, yellow are points with a distance of 1cm distance to the closest 3D ground-truth point, and red points

have a distance > 2cm to the nearest 3D ground-truth point. Even rows depict the ground-truth point cloud with the same

color coding, but indicating the distance to the closest estimated 3D point. Hence, odd rows show the accuracy of a given

method, whereas even rows depict their completeness. Note that we don’t apply post-processing to HyperDepth on our

synthetic data, as the evaluation metrics – percentage of outliers remain the same regardless of the post-processing.

5.2. Real Data

Fig. 8 shows additional depth map results on the dataset provided by [1]. We compare our method to the same set of

baselines as in the previous experiment. In addition we show results as 3D point-clouds in Fig. 9 for the model Angel, in

Fig. 10 for the model Arch, and in Fig. 11 for the model Gargoyle. For each method we show two point clouds from different

perspectives. Odd rows show the point cloud from the estimated depth map, with green indicating accurate predictions,

yellow are points with a distance of 5mm distance to the closest 3D ground-truth point, and red points have a distance



(a) Input, GT (b) 127.170, 5.955, 11.378 (c) 114.224, 5.955, 11.320 (d) 113.926, 5.956, 11.320

(e) 25.373, 6.794, 10.718 (f) 22.722, 6.870, 10.550 (g) 18.041, 7.045, 10.133 (h) 17.505, 7.115, 10.118

Figure 3: Influence of HyperDepth Post-Processing. (a) Input IR image and projected ground-truth model. (b) No post-

processing, raw random forest output. (c) Mask out disparity values /∈ [0, dmax]. (d) Additionally mask out disparity values

with likelihood from forest < 0.1. (e) Additionally mask out disparity values, where best and second best predicted disparity

difference is > 10pixels. (f) Additionally mask out disparity values, where best and second best predicted disparity difference

is > 5pixels. (g) Additionally mask out disparity values, where best and second best predicted disparity difference is >
2pixels. (h) Additionally mask out disparity values, where best and second best predicted disparity difference is > 1pixels.

The numbers in the sub-caption are accuracy, completeness and harmonic mean of those two numbers in mm.

> 1cm to the nearest 3D ground-truth point. Even rows depict the ground-truth point cloud with the same color coding, but

indicating the distance to the closest estimated 3D point. Hence, odd rows show the accuracy of a given method, whereas

even rows depict their completeness.

5.3. Real Data in Complex Real­World Scenarios

In addition to the dataset provided by [1], we further trained and evaluated our network in more complex real-world

scenarios with IR images collected by a Microsoft Kinect v1 (3, 191 for training and 623 for testing). Fig. 12 shows qualitative

3D results on the test set with a human in motion and an indoor scene respectively, demonstrating that our method generalizes

well to complex real-world scenarios.



(a) Input, GT (b) Block M. (c) FastMRF [1] (d) HyperD. [2] (e) Ours LP (f) Ours +LD (g) Ours +LG

Figure 4: Additional Qualitative Results on Synthetic Data.
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Figure 5: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from

estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point.
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Figure 6: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from

estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point.



B
lo

ck
M

at
ch

in
g

ac
cu

ra
cy

co
m

p
le

te
n

es
s

F
as

tM
R

F
[1

]

ac
cu

ra
cy

co
m

p
le

te
n

es
s

H
y

p
er

D
ep

th
[2

]

ac
cu

ra
cy

co
m

p
le

te
n

es
s

O
u

rs

ac
cu

ra
cy

co
m

p
le

te
n

es
s

Figure 7: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from

estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point.



(a) Input, GT (b) Block M. (c) FastMRF [1] (d) HyperD. [2] (e) Ours

Figure 8: Additional Qualitative Results on Real Data.
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Figure 9: Additional Qualitative 3D Results on Real Data. Angel. Event rows depict accuracy results: 3D point-cloud

from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point.
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Figure 10: Additional Qualitative 3D Results on Real Data. Arch. Event rows depict accuracy results: 3D point-cloud

from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point. Arch.
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Figure 11: Additional Qualitative 3D Results on Real Data. Gargoyle. Event rows depict accuracy results: 3D point-cloud

from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green

= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the

same color coding indicating the distance to the closest estimated 3D point.



(a) Input (b) Block Matching (c) Ours

Figure 12: Qualitative 3D Results on Real Data in Complex Real-World Scenarios.
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