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1. Computing the whitening matrix
The whitening matrix WB in Eq. (3) of the main paper

can be computed in different ways. For instance, Huang et
al. [6] use the ZCA whitening [7], while Siarohin et al. [11]
use the Cholesky decomposition [2]. Both tecniques are
unique (given a covariance matrix) and differentiable, how-
ever we adopted the method proposed in [11] because it is
faster [13] and more stable [11] than the ZCA-based whiten-
ing. Moreover, many modern platforms for deep-network
developing include tools for computing the Cholesky de-
composition, thus this solution makes our approach easier
to be reproduced.

We describe below the main steps we used to compute
WB . Since W s

B and W t
B , respectively used in Eq. (4) and

in Eq. (5) of the main paper, and depending on Bs and Bt,
are computed exacly in the same way, in the following we
refer to the generic matrix WB in Eq. (3) which depends on
the batch statistics Ω = (µB ,ΣB).

The first step consists in computing the covariance ma-
trix ΣB . To avoid instability issues, we blend the empirical
covariance matrix Σ̂B with E, the identity matrix [10]:

ΣB = (1− ε)Σ̂B + εE, (1)

where:

Σ̂B =
1

m− 1

m∑
i=1

(xi − µB)(xi − µB)>. (2)

Once ΣB is computed, we use the approach proposed in
[11] to compute WB such that W>BWB = Σ−1B :

1. Let TT> = ΣB , where T is a lower triangular matrix.

2. Using the Cholesky decomposition we compute T and
T> from ΣB .

3. We invert T and we obtain: WB = T−1.

For more details, we refer to [11].

2. Relation between the MEC loss and the En-
tropy and the Consistency losses

We show below a formal relation between our MEC loss
and the Entropy and the Consistency losses.

Proposition 1. Let F ⊂ X → Y be an hypothesis space of
predictors of infinite capacity. Then the minimization of the
consensus loss Lt yields a predictor that is consistent, i.e.
p(·|xt1

i ) = p(·|xt2
i ) for any pairs of perturbed datapoints

(xt1
i ,x

t2
i ) and confident, i.e. p(y|x) = 1 for all x ∈ X and

some y ∈ Y depending on x.

Proof. The pointwise loss `t(xt1
i ,x

t2
i ) is lower bounded by

0 and it attains 0 if and only if the conditions on p listed
in the theorem are satisfied. The result follows noting that
predictors of infinite capacity can always attain 0 loss.

3. Additional experiments using synthetic-to-
real adaptation settings

In this section we report results of additional UDA ex-
periments using synthetic source images and real target im-
ages and we compare our method with the state-of-the-art
approaches in these settings.

3.1. Datasets and experimental setup

Synthetic numbers → SVHN. It is a common practice
in UDA to train a predictor on annotated synthetic images
and then test on real images. In this setting we use the
SYN NUMBERS [4] as the source dataset and SVHN [8] as
the target dataset. The former (SYN NUMBERS) is com-
posed of images which are software-generated (e.g., using
different orientations, stroke colors, etc.), in order to sim-
ulate the latter (SVHN). Despite some geometric similari-
ties between the two datasets, there exists a significant do-
main shift between them because, for instance, the cluttered
background in SVHN, which is absent in SYN NUMBERS
images (see Fig. 1 (a)). There are approximately 500,000
annotated images in the SYN NUMBERS dataset.
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(a) SYN NUMBERS→ SVHN

(b) SYN SIGNS→ GTSRB

Figure 1: Samples from Synthetic Images dataset (source)
and Real Image dataset (target)

Synthetic Signs→GSTRB. In this setting, which is anal-
ogous to the SYN NUMBERS → SVHN experiment, the
source dataset (SYN SIGNS [4]) is composed of synthetic
traffic signs, while the target dataset is the German Traf-
fic Sign Recognition Benchmark (GTSRB [12]). The SYN
SIGNS dataset is composed of 100,000 synthetic images
belonging to 43 different traffic signs categories, while the
GTSRB dataset is composed of 39,209 real images, parti-
tioned using the same 43 categories. As shown in Fig. 1
(b), the real target domain exhibits a domain shift because
of different illumination conditions, background clutter, etc.

In the experiments conducted on both settings we adopt
the standard evaluation protocols and the corresponding
training/testing splits [4], using identical experimental se-
tups as reported in Sec. 4.2 of the main paper.

3.2. Comparison with state-of-the-art methods

In Tab 1 we report the results of our method compared
with other UDA methods. We compare with the follow-
ing baselines: Domain-Adversarial Training of Neural Net-
works (DANN) [4], Asymmetric tri-training (ATT) [9], As-
sociative Domain Adaptation (ADA) [5], AutoDIAL [1]
and Self-Ensembling (SE) [3]. The results of most of the
methods reported in Tab. 1 are taken from the original pa-
pers. In the same table we also show SE and AutoDIAL re-
sults obtained using comparable base-network architectures
as those used by our method. Moreover, similarly to the
main paper, and for a fair comparison, we split Tab. 1 into
two sections in order to differentiate the methods which use
data augmentation from those methods which do not exploit
data augmentation.

When DWT is compared with the methods using no-data
augmentation, it outperforms all the baselines in both the
SYN NUMBERS→ SVHN and the SYN DIGITS→ GT-
SRB setting. When data augmentation is considered, DWT-
MEC outperforms all the other approaches in the second
setting but performs worse by 1% when compared with SE
[3] in the first setting. The superior performance of SE in
SYN NUMBERS→ SVHN can be attributed to the use of a
very conservative threshold on the target predictions, which
helps to filter-out noisy predictions during training. How-
ever, as demonstrated in Sec 4.3.1 of the main paper (Tab.

Method
Source
Target

Syn Numbers
SVHN

Syn Signs
GTSRB

Source Only 86.7±0.8 80.6±0.6
w/o augmentation
DANN [4] 91.0 88.6
ATT [9] 92.9 96.2
ADA [5] 91.8 97.6
AutoDIAL † [1] 87.9 97.8
DWT 93.70±0.21 98.11±0.13
Target Only 95.62 98.49
w/ augmentation
SE † a [3] 91.92±0.09 97.73±0.10
SE † b [3] 95.62±0.12 99.01±0.04
DWT-MEC 94.62±0.13 99.30±0.07
DWT-MEC (MT) 94.10±0.21 99.22±0.16

Table 1: Accuracy (%) using Synthetic image → Real im-
age settings.* denotes values extracted from [3]; a means
minimal augmentation; b means full augmentation of both
the source and the target data; and † denotes methods using
base networks which are identical to our proposed method.

2), the absence of a confidence threshold, tuned on the spe-
cific setting, might lead SE to a drastic performance degra-
dation.

4. CNN Architectures

In this section we report the network architectures used
in all the small-image experiments shown in both the main
paper and in this Supplementary Material (Tab. 2, 3, 4, 5).

Description
Input: 28 × 28
Conv 5 × 5 × 32, pad 2
Max-pool 2 × 2, stride 2
Conv 5 × 5 × 48, pad 2
Max-pool 2 × 2, stride 2
Fully connected, 100 units
Fully connected, 100 units
Fully connected, 10 units, softmax

Table 2: MNIST↔ USPS base architecture as used in [4].
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Description
Input: 32 × 32 × 3
Conv 5 × 5 × 64, pad 2
Max-pool 3 × 3, stride 2
Conv 5 × 5 × 64, pad 2
Max-pool 3 × 3, stride 2
Conv 5 × 5 × 128, pad 2
Fully connected, 3072 units
Dropout, 50%
Fully connected, 2048 units
Dropout, 50%
Fully connected, 10 units, softmax

Table 3: SVHN↔MNIST and SYN NUMBERS↔ SVHN
base architecture as used in [4].

Description
Input: 32 × 32 × 3
Conv 3 × 3 × 128, pad 1
Conv 3 × 3 × 128, pad 1
Conv 3 × 3 × 128, pad 1
Max-pool 2 × 2, stride 2
Dropout, 50%
Conv 3 × 3 × 256, pad 1
Conv 3 × 3 × 256, pad 1
Conv 3 × 3 × 256, pad 1
Max-pool 2 × 2, stride 2
Dropout, 50%
Conv 3 × 3 × 512, pad 0
Conv 1 × 1 × 256, pad 0
Conv 1 × 1 × 128, pad 0
Global Average Pooling
Fully connected, 9 units, softmax

Table 4: CIFAR-10↔ STL base architecture as used in [3].

Description
Input: 40 × 40 × 3
Conv 5 × 5 × 96, pad 2
Max-pool 2 × 2, stride 2
Conv 3 × 3 × 144, pad 1
Max-pool 2 × 2, stride 2
Conv 5 × 5 × 256, pad 2
Max-pool 2 × 2, stride 2
Fully connected, 512 units
Dropout, 50%
Fully connected, 43 units, softmax

Table 5: SYN SIGNS↔ GTSRB base architecture as used
in [4].
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