
RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for
Real-Time Point Cloud Shape Completion

Muhammad Sarmad
KAIST

South Korea
sarmad@kaist.ac.kr

Hyunjoo Jenny Lee∗

KAIST
South Korea

hyunjoo.lee@kaist.ac.kr

Young Min Kim∗

KIST, SNU
South Korea

youngmin.kim@snu.ac.kr

A. Implementation Details
The suggested RL-GAN-Net architecture combines

three fundamental building blocks as shown in Sec. 3 of the
main article. The general form of the architecture is pro-
vided in Fig. 1. In this section, we provide details of our
implementation for each network.

A.1. AE Details

The AE is composed of an encoder that converts in-
put points Pin into GFV, and a decoder network that re-
verts GFV back to the point cloud domain, as shown in
Fig. 1a. The input and output points are an unstructured
list of 2048 3D coordinates that is sampled from the under-
lying 3D structure. The encoder network consists of five 1
D convolution layers with 64, 128, 128, 256, 128 channels
respectively, while the decoder consists of FC layers 256,
256 and 6144 channels respectively. Each layer is followed
by ReLu. The bottleneck size for AE is 128. We trained the
AE to reduce the Chamfer distance (Eq.(1) of the main arti-
cle) between the input and output point cloud. The Chamfer
distance calculation is imported from the implementation1

of Li et al [3].

A.2. l-GAN Details

l-GAN is composed of the encoder block of AE and a
generator and a discriminator, as shown in Fig. 1b. For the
generator and the discriminator pair, we adapted the main
architecture of the GAN from Zhang et al. [8] and applied
in the latent space acquired by the AE. The detailed net-
work architecture for our modified l-GAN pipeline has been
shown in Table 1 and 2 respectively. We trained the GAN
using WGAN-GP [4] adversarial loss with λgp = 10. The
total number of iterations was one million. As a typical
GAN training, we updated discriminator 5 times for every
update of the generator. We used Adam optimizer [5] with
β1=0.5 and β2=0.9. The learning rate for both generator

∗co-corresponding authors
1https://github.com/lijx10/SO-Net

and discriminator was set to 0.0001. Batch size was set to
50 and number of workers were set to 2. We did not use any
learning rate decay.

We selected the dimension of z-vector to be 1. We did
this to limit the dimensions of action space for the agent. All
the experiments conducted were with a single dimension.
We also tested with 6 and 32 dimensions but there was no
change in the performance of the GAN or the agent in either
case. Therefore we kept the dimension of the z-vector to 1.

We trained the GAN using the dataset generated by pass-
ing the ShapeNet point cloud dataset through the encoder of
the AE. Therefore, the output dimension of our generator is
the same as the bottleneck size of our AE (128).

For l-GAN training, we adopted the self-attention GAN
open source code2 [8].

A.3. RL Agent Details

The third element of the basic architecture is RL. The
basic RL framework is composed of an agent and the envi-
ronment as in Fig. 1c. Among many possible variations of
the RL agent, we used the actor-critic architecture to enable
continuous control of the l-GAN.

Actor and Critic Architecture The actor and critic net-
works are chosen to be fully connected (FC) layers. The
actor has four FC layers with 400, 400, 300, 300 neurons
with ReLu activation for the first three layers and tanh
for the last layer respectively. The input to the actor is a
128-dimensional GFV. The output is a single dimension z-
vector. The critic also has four FC layers with 400, 432,
300, 300 neurons with ReLu activation for the first two lay-
ers respectively.

Reward Function Hyper-parameter In Eq.(5) of the
main article, the multiplicative weights of wCH , wGFV ,
and wD are assigned to the corresponding loss functions.
The weight values are chosen such that, when combined,

2https://github.com/heykeetae/Self-Attention-GAN



(a) AE (b) l-GAN (c) RL

Figure 1: Network architecture of the three fundamental building blocks of RL-GAN-Net.

Name Kernel Stride Padding InpRes OutRes Input Activation Norm
convtr2d-layer1 4x4 - - 50x32x1x1 50x256x4x4 z-vector ReLu SN,BN
convtr2d-layer2 3x3 2 2 50x256x4x4 50x128x5x5 convtr2d-layer1 ReLu SN,BN
convtr2d-layer3 3x3 2 2 50x128x5x5 50x64x7x7 convtr2d-layer2 ReLu SN,BN

Self-Atten[8] - - - 50x1x7x7 50x1x7x7 convtr2d-layer3 - -
convtr2d-last 2x2 2 1 50x64x7x7 50x1x12x12 Self-Atten - -

reshape1 1x1 - - 50x1x12x12 50x144 convtr2d-last - -
convtrans1d 1x1 - - 50x144 50x128 convtr2d-last - -

Table 1: The network architecture of the generator. convtr2d = 2D transposed convolutional layer, convtrans1d = 1D trans-
posed convolution, SN = spectral normalization[8] and BN = batch normalization

the effects of individual terms are not out of proportion or
dominant in any way. In other words, the total loss is within
range for the RL agent to learn useful information for all of
the terms of LCH , LGFV , and LD. For example, if the
value for the Chamfer loss was approximately 1000 and
the GFV loss was 10, then they are normalized by divid-
ing by 100 and 1 respectively. After consulting the range
of raw loss values of multiple trials, we set wCH = 100,
wGFV = 10.0, and wD = 0.01 for all our experiments.

The RL agent was adopted from the open source imple-
mentation of the DDPG algorithm.3.

Training Details The training of the agent can be divided
into two parts. The first part is the collection of experience.
The second part is the training of the actor and critic net-
work in accordance with the DDPG algorithm as outlined
in the previous work [6].

For the first part, we refer the readers back to Fig. 3 of the
main article. It shows the mechanism by which the replay
buffer R is filled continuously with useful experiences. We
fill the memory with one input at a time. This implies that
the batch size for this case is one. Our task is episodic,
which means that after each episode we collect a reward.
The number of episodes is equal to the maximum number
of allowed iterations. In each episode, the agent is allowed

3https://github.com/sfujim/TD3

to take a single action after which the episode terminates.
The sequences of state, action and reward tuples are then
stored in the replay buffer.

The second part, i.e., training the actor and critic in ac-
cordance with DDPG, is performed by keeping the batch
size equal to one hundred. This means that a batch of a
100 memories from the replay buffer is picked randomly to
train the actor and critic networks according to the DDPG
algorithm. The evaluation of the policy was carried out af-
ter 5000 iterations. The number of dimensions of state is
128, which is basically the noisy GFV obtained by encod-
ing the incomplete point cloud. The action dimension is
determined by the dimension of the GAN’s z-space, which
is 1. The action space is kept to unity to achieve better per-
formance by the agent. We also tested with 32 dimensions
for z space but it did not have any noticeable effect on the
performance of GAN or the agent.

We list the parameter values used for the training with
DDPG algorithm in Table 3.

B. Additional Results

In this section, we provide enlarged images of the exper-
iments in Sec. 4 of the original document and include some
additional results that were omitted due to the page limit.



Name Kernel Stride Padding InpRes OutRes Input Activation Norm
convtrans1d 1x1 - - 50x128 50x144 input - -

reshape1 - - - 50x144 50x12x12 convtrans1d - -
conv2d-layer1 3x3 2 2 50x12x12 50x64x7x7 reshape1 ReLu SN,BN
conv2d-layer2 3x3 2 2 50x64x7x7 50x128x5x5 conv2d-layer1 ReLu SN,BN
conv2d-layer3 3x3 2 2 50x128x5x5 50x256x4x4 conv2d-layer2 ReLu SN,BN
Self-Atten[8] - - - 50x256x4x4 50x256x4x4 conv2d-layer3 - -
conv2d-last 4x4 - - 50x256x4x4 50x1 Self-Attention - -

Table 2: The network architecture of the discriminator. conv2d = 2D convolutional layer, convtrans1d = 1D transposed
convolution, SN = spectral normalization [8] and BN = batch normalization

Parameter Value
maximum number of iterations 1e6

exploration noise 0.1
batch size from R for the actor training 100

discount γ 0.9
speed of target value updates τ 0.005

noise added to policy during critic update 0.2
range to clip noise policy 0.5

frequency for delayed policy update 2

Table 3: The parameter values used to train the RL agent.

B.1. Shape Completion Results

The examples of shape completion results for point cloud
missing 20% and 70% of its original points are enlarged in
Fig. 2 and Fig. 6. In addition, we provide the examples
of results for remaining data sets we used, which are miss-
ing 30%, 40% and 50% of the original points as shown in
Fig. 3, 4 and 5 respectively. It is clear that the performance
of our pipeline is prominent as the percentage of missing
portion increases.

B.2. Robustness Results

The robustness test results with the different dataset pro-
vided by Dai et al [2] are included in Fig. 7 and Fig. 8. Our
result is almost not affected by the jitter, and the completed
shape is semantically similar to its original shape.

For the cases where there is no jitter, we also include the
completion results of Dai et al [2]. Their approach works in
a different domain (voxel grid) but we are including a com-
parison as there is not much prior work in point cloud space.
To briefly describe, their approach used an encoder-decoder
network in 323 voxel space followed by an analytic patch-
based completion in 1283 resolution. Their results of both
resolutions are available as distance function format. We
converted the distance function into a surface representation
using the MATLAB function isosurface as they described,
and uniformly sampled 2048 points to compare with our re-
sults. By comparing against the ground truth model, ours is

Input V 323 V 1283 AE RL-GAN-Net
0.0688 0.169 0.162 0.0531 0.0690

Table 4: The Chamfer distance compared to the ground
truth. There are two volumetric approaches compared
against two point cloud based approach. V 323 is the results
using encoder-decoder based network in voxel space at the
resolution of 32 per dimension, and V 1283 shows the dis-
tance after the full pipeline including patch-based synthesis
in [2]. AE and RL-GAN-Net are the point cloud based ap-
proaches of [1] and ours.

superior to their approach in terms of the Chamfer distance
as shown in Table 4. It should be noted here that the Cham-
fer distance between the input and ground truth is compa-
rable to autoencoder. This is expected because the dataset
provided by Dai et al.[2] does not have any drastic level of
incompletion in many cases. We also refer the reader back
to the Fig.5a of the main article where clearly the Chamfer
distance of the input point cloud compared to the ground
truth was even lower than an AE for missing data percent-
ages less than forty.

We present the qualitative visual comparison in Fig. 9.
The results of encoder-decoder based network (refered as
Voxel 323 in the figure) are smoother than point clouds pro-
cessed by AE as the volume accumulation compensates for
random noise. However, the approach is limited in resolu-
tion and washes out the local details. Even after the patch-
based synthesis in 1283 resolution, the details they could
recover are limited. On the other hand, our approach ro-
bustly preserves semantic symmetries and completes local
details in challenging scenarios. It should be noted that we
used only scanned point data but did not incorporate the ad-
ditional mask information, which they utilized.

B.3. Classifier Details

We have trained the PointNet [7] classifier to distinguish
the four categories that our RL-GAN-Net was trained on.
After training, it classifies the shapes with 99.36% of ac-
curacy on the full data set with a complete point cloud.



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 2: Qualitative results of point cloud shape completion missing 20% of its original points.

At test time, we consider the three scenarios as shown in
Fig. 10, namely using the raw partial input, and using the
shapes processed and completed by AE and RL-GAN-Net.
The three pipelines are tested with the incomplete point
cloud dataset for classification accuracy. For the cases that
more than 30% of the original shape data is missing, the

classification accuracy is boosted when the shapes are pre-
processed with shape completion pipeline. And our sug-
gested pipeline is superior to AE and robust to large miss-
ing regions. The detailed classification results are shown in
Table 5.



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 3: Qualitative results of point cloud shape completion missing 30% of its original points.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J. Guibas. Representation learning and adversarial
generation of 3d point clouds. CoRR, abs/1707.02392, 2017.
3, 7

[2] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and shape
synthesis. CoRR, abs/1612.00101, 2016. 3, 9, 10, 11

[3] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set
generation network for 3d object reconstruction from a single
image. CoRR, abs/1612.00603, 2016. 1

[4] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent
Dumoulin, and Aaron C. Courville. Improved training of
wasserstein gans. CoRR, abs/1704.00028, 2017. 1

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 1



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 4: Qualitative results of point cloud shape completion missing 40% of its original points.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2015. 2

[7] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. CoRR, abs/1612.00593,
2016. 3, 7

[8] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Au-
gustus Odena. Self-attention generative adversarial networks.
CoRR, abs/1805.08318, 2018. 1, 2, 3



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 5: Qualitative results of point cloud shape completion missing 50% of its original points.

Network 20% 30% 40% 50% 70%
PointNet[7](Fig. 10a) 98.6 95.4 85.2 73.9 50.2

AE[1] + PointNet (Fig. 10b) 98.5 96.0 89.6 80.4 69.6
RL-GAN-Net (vanilla) + PointNet (Fig. 10c) 97.7 96.7 95.0 92.7 82.5
RL-GAN-Net (hybrid) + PointNet (Fig. 10c) 98.1 97.2 95.5 93.3 83.8

Table 5: Classification accuracy of point cloud input processed by RL-GAN-Net compared to vanilla and AE for various
percentage of missing data points



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 6: Qualitative results of point cloud shape completion given input data missing 70% of its original points.



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 7: Robustness test. We applied our algorithm to the point cloud data provided by [2]. This figure shows examples of
shape completion results with the raw scan data provided.



Pin AE RL-GAN-NetGround Truth
(GT)

RL-GAN-Net 
and GT

Figure 8: Robustness test. We applied our algorithm to the point cloud data provided by [2]. This figure shows results when
we added zero-mean Gaussian noise with standard deviation 0.01 (clipped at 0.05).



Pin AE RL-GAN-Net
Ground Truth

(GT) Voxel 323 Voxel 1283

Figure 9: Performance Comparison. Comparison of RLGAN-Net vs Dai et al.[2] for their 323 and 1283 resolution results.
We converted their distance function output to point cloud domain. It should be noted that they additionally have mask
information whereas we operate directly on the scanned points only.



(a) Vanilla PointNet Classifier

(b) AE + PointNet Classifier

(c) RL-GAN-Net + PointNet Classifier

Figure 10: The variations of network architecture for point cloud classification with missing data


