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1Chalmers University of Technology 2TU Munich 3ETH Zürich 4Microsoft

The supplementary material of two parts: i) The accom-
panying video shows how the base translations estimated by
MapNet [1] are coupled to the image content and illustrates
the poses predicted for the test images in some of the scenes
shown in the paper. Sec. A gives a short overview over the
video. ii) Sec. B presents an additional experiment on the
DeepLoc dataset [6] that was left out of the paper due to
space constraints.

A. Supplementary Video
The video consists of two parts: The first part shows how

the impact of each estimated base translation on the pre-
dicted pose depends on the image content. This is shown
for the training images from the scene from Fig. 2(right) in
the paper.

The second part shows the positions estimated for the
test images. We show the test image itself, the most similar
training image (where similarity is measured based on the
embeddings in the high-dimensional space), the base trans-
lations for the two images, and a 2D top-down view of the
camera trajectories. In the 2D view, we show the ground
truth training and testing positions, the pose of the current
test image predicted by an absolute pose regression tech-
nique, the ground truth pose of the test image, and the pose
of the most similar training images.

For all experiments shown in the video, the absolute pose
regression technique used was MapNet [1]. Only test im-
ages that can be localized by Active Search [7] are shown.

B. Experiments on the DeepLoc Dataset [6]
The DeepLoc1 dataset [6] was captured from a robot

driving a triangular-shaped trajectory multiple times (c.f .
Fig. 1). In contrast to the RobotCar dataset [4], which
was captured in an urban environment, the DeepLoc dataset
shows a significant amount of vegetation.

Tab. 1 (first row) compares the results obtained with
DenseVLAD [9] without (DenseVLAD) and with inter-

1http://deeploc.cs.uni-freiburg.de/

Figure 1. Visualization of the SfM model of the DeepLoc
dataset [6] that we constructed from the training images (red).

polation (DenseVLAD+Inter.) with the results for vari-
ous absolute pose regression techniques reported in [6].
Again, DenseVLAD significantly outperforms pose regres-
sion approaches based on a single image [2, 3, 5]. The
table also compares DenseVLAD and DenseVLAD+Inter.
against three sequence-based approaches, VLocNet [10],
VLocNet++STL [6], and VLocNet++MTL [6]. All three di-
rectly fuse feature map responses from the previous time
step t − 1 into the CNN that predicts the pose at time t.
VLocNet++MTL also integrates some form of higher-level
scene understanding through semantic segmentation. All
three methods operate on image sequences and thus use
more information compared to DenseVLAD, which only
uses a single image for localization. Still, DenseVLAD out-
performs VLocNet [10].

The ground truth for the DeepLoc dataset was created
using LIDAR-based SLAM. The dataset only provides the
poses of the LIDAR sensor and not the cameras. This is not
an issue for pose regression techniques as the camera and
the LIDAR are related by a fixed (but unknown) transfor-
mation and it is irrelevant for the regressor which of the two
local coordinate systems is used. However, not knowing the
relative transformation from the LIDAR to the camera coor-
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Table 1. Median position and orientation errors on the DeepLoc dataset [6]. DenseVLAD+Inter. uses the top-15 retrieved images for
interpolation. We show results for (top row) the original dataset and (bottom) our SfM version of the dataset.

dinate system prevents us from easily creating a 3D model
for structure-based methods. In order to be able to com-
pare against Active Search [7], we thus created a second
version of the dataset using SfM [8]. To this end, we ran
SfM on both the training and test images together. We then
registered the SfM model against the LIDAR ground truth
poses2 to recover the scale of the model. This provided us
with ground truth poses for the training and test images. Fi-
nally, we used the ground truth poses of the training images
and the feature matches between them to triangulate the 3D
model used by Active Search3. This ensures that the 3D
model used for localization only contains information from
the training images.

The second row of Tab. 1 shows the results obtained by
Active Search on our version of the dataset. As can be
seen, Active Search is significantly more accurate than all
pose regression techniques, including VLocNet++MTL, even
though it only uses a single image for localization. For ref-
erence, we also include results obtained with DenseVLAD
and DenseVLAD+Inter. on this new version of the dataset.
As can be seen, the results obtained via DenseVLAD and
DenseVLAD+Inter. do not change significantly between
both versions of the datasets. This shows that the results ob-
tained by Active Search and the pose regression algorithms
on the two variants of the dataset are comparable.
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