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Introduction
This is the supplementary material to our paper SDC –

Stacked Dilated Convolution: A Unified Descriptor Net-
work for Dense Matching Tasks. It covers the following
contents that are mentioned in the main paper:

• Comparison between multiple, parallel, dilated convo-
lutions and a single convolution with a larger sparse
kernel.

• Comparison of different hyper-parameters for our
novel SDC network architecture.

• Detailed description for our sampling of training data
with visual examples for sampled patch triplets.

• More visual results of SDC feature matching with dif-
ferent algorithms on different data sets.

1. Large Sparse Convolution
Multiple dilated convolutions in parallel are similar to a

single larger convolution with a sparse kernel (see Figure 1).
The difference is that pixels where the parallel kernels over-
lap are only considered once in a single kernel (for 3 × 3
kernels this will be the center pixel only) and that a single
kernel will merge all information into a single output. With
our parallel convolutions we have the choice to add them,
stack them, or combine them as we want.

SDC Design Single Sparse Kernel

Figure 1: Two variants of sparse 17× 17 kernels. 4 parallel
dilated 5× 5 kernels (left), and a single kernel (right).

For comparison of both approaches, we design two vari-

ants which use single, larger convolutions with the exact
same receptive field as our SDC network. The first one
produces the same output dimensions at each layer, i.e.
64, 64, 128, 256, and 128 feature channels. This results in
a 4 times larger network compared to our SDC network
approximately (disregarding overlapping pixel positions).
The second variant is designed to achieve the same network
size as our SDC network which results in 4 times less out-
put channels per layer, i.e. 16, 16, 32, 64, and 32. We call
these networks Fake-big and Fake-small respectively, be-
cause these networks try to imitate our original SDC design.
The complete architectures look like this:
• Fake-big: SparseConv(17,64,1,1)–

SparseConv(17,64,1,1)–SparseConv(17,128,1,1)–
SparseConv(17,256,1,1)–SparseConv(17,128,1,1)

• Fake-small: SparseConv(17,16,1,1)–
SparseConv(17,16,1,1)–SparseConv(17,32,1,1)–
SparseConv(17,64,1,1)–SparseConv(17,32,1,1)

Sparsity is enforced according to the pattern shown in Fig-
ure 1. The numbers parameterizing the convolutions are
explained in Section 4.1 of the main paper. Accuracy with
network characteristics, ROC curves, and Robustness are
evaluated in Table 1 and Figures 2 and 3. These three met-
rics are explained in Section 4.1 of the main paper.

Table 1: Comparison of the accuracy for our SDC networks
and the Fake variants that use single, sparse convolutions
along with receptive field size (RF), number of parameters
(Size) and accumulated sub-sampling factor due to striding.

Network Accuracy RF Size Factor
SDC (Ours) 97.2 % 81 1.95 M 1

Fake-big 97.0 % 81 6.3 M 1
Tiny (Ours) 96.0 % 25 0.12 M 1
Fake-small 96.0 % 81 0.4 M 1

In all evaluations, our SDC network outperforms the
Fake networks. Considering that Fake-big is a much big-
ger network, this is even more evidence that our design is
very powerful. The concatenation of multi-scale features
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Figure 2: ROC curves for our SDC networks and the two
Fake variants.
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Figure 3: Robustness for our SDC networks and the two
Fake variants.

and the mixture of multi-scale information at every level is
beneficial for image description.

2. Design Decisions
Variation of depth and width of our SDC network struc-

ture is covered by our Tiny version. In the following, we
will vary batch size, activation functions, and loss function
and compare them. We will alter one parameter at a time
and compare the robustness to our original design. For bet-
ter comparison, we introduce relative robustness which is
the robustness ratio of a model and a reference model. A
relative robustness greater than 1 means that the model is
better than the reference model. We will use our original
SDC network as reference which will result in a baseline of
100 % of relative robustness for this model.
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Figure 4: Relative robustness for our SDC network trained
with different batch sizes (BS).
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Figure 5: Relative robustness for our SDC network with
different activation functions.

Results for different batch sizes are given in Figure 4.
The impact of the batch size is minor. Even for very small
mini batches, the relative robustness drops by less than 2
percent points. Increasing the batch size is not improving
the performance either.

For alternative activation functions, we consider ReLU
[12] instead of ELU [5]. Since our final feature vectors
are normalized to unit range, the rectification of ReLU re-
stricts the feature space to the non-negative orthant of the
128-dimensional hypercube which is only 2−128 of the full
volume. Therefore, we also train and compare a network
with ReLU and linear activation in the last layer. The com-
parison is shown in Figure 5.

As mentioned in the main paper where we use triplet
training with a thresholded hinge embedding loss [1], we
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Figure 6: Relative robustness for our SDC network trained
with different triplet loss functions.

have also experimented with the softmax loss of [8] and
the PN loss of [3] (see Figure 6). Both alternative losses
perform better for some displacements, and worse for oth-
ers. However, the difference in robustness is not significant
and training with these real triplet losses is much less stable
forcing us to use a lower learning rate and thus increasing
overall training time.

3. Training Data

To train a single unified descriptor network that can be
used for any algorithm on any domain, we use multiple data
sets with very diverse characteristics. They differ in number
of sequences and sequence lengths, image resolution, avail-
able ground truth, ground truth masks, and color channels.
We have tried to consider all these factors to avoid imbal-
ance and over-representations in our training data. In the
end, we sample reference images with the following proba-
bilities for each data set:

• KITTI [11]: 0.5
• Sintel [4]: 0.175
• Middlebury Optical Flow[2]: 0.025
• Middlebury Stereo [13]: 0.05
• HD1K [10]: 0.175
• ETH3D [14]: 0,075

We do not sample the same image twice until all images
of the respective data set were selected, i.e. within each
data set, we use all images equally often. For each im-
age in each epoch, 100 randomly sampled reference patches
are selected. If a data set provides ground truth for multi-
ple tasks (e.g. KITTI [11]), we randomly select one of the
tasks from stereo, optical flow, or scene flow. The reference
patches are sampled from pixel positions where ground
truth exists and where the ground truth displacement points

to a visible position in the corresponding view, i.e. occlu-
sions and out-of-bound displacements are excluded wher-
ever possible. For each of the 100 reference patches, we
extract the corresponding matching patch according to the
ground truth. We pad the image with reflection at image
boundaries and use bilinear interpolation at sub-pixel posi-
tions. The negative patch is extracted by altering the ground
truth displacement with a random offset. This random off-
set is at least 2 pixels and at most 100 pixels large in mag-
nitude. For stereo correspondences, the displacement and
the random offset are 1-dimensional along the horizontal
direction according to the epipolar constraint. Other cor-
respondences have 2-dimensional displacement, i.e. circu-
lar around the ground truth correspondence. Since close-by
correspondences are harder to distinguish, we sample the
random offset non-uniformly. In detail, we split the random
offset into two ranges, a close one ([2, 10] pixels) and a dis-
tant range (]10, 100] pixels). The close range is selected 3
times more often than the far range and within each range,
we sample uniformly. This leads to the overall probability
distribution for our random negative displacements shown
in Figure 7.
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Figure 7: Probability distribution of the random offset used
to generate the negative patch correspondence.

Each image is processed completely (all 100 patch
triplets) before selecting the next image pair from one of
the data sets to reduce IO operations in our training data
pipeline. We then shuffle chunks of 3200 triplets to rein-
troduce randomness across data sets and images. As men-
tioned in the main paper, the input patches are normalized
according to the mean pixel and variance of the complete
training data. The mean pixel is [0.3534, 0.3448, 0.3295]
and the mean standard deviation is [0.2492, 0.2465, 0.2446]
for the red, green, and blue color channels respectively.

Smaller displacements (less than 2 pixels) are not con-
sidered for several reasons. Minimal changes in appearance
might confuse the network, rounding and interpolation in-



troduce small inaccuracies, and most applications tolerate a
matching accuracy less than 2 pixels endpoint error. Visual
examples of our training triplets are given in Figure 9.

The 200 training images from KITTI [11], are randomly
split into a subset for actual training (70 %), one for valida-
tion (20 %), and one for testing in our experiments section
(10 %). This is the exact list of sequences for each subset:

• Training: 0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 33, 34,
35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 49, 50, 51, 54,
55, 56, 58, 59, 62, 63, 66, 67, 68, 70, 71, 74, 75, 76,
78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 93, 95, 96, 97,
99, 101, 102, 103, 104, 105, 107, 109, 111, 113, 114,
116, 117, 118, 120, 123, 125, 128, 129, 130, 132, 134,
135, 137, 138, 139, 140, 141, 143, 144, 145, 147, 148,
149, 150, 151, 152, 154, 155, 156, 157, 160, 161, 162,
163, 164, 165, 167, 168, 169, 170, 171, 172, 175, 177,
178, 179, 180, 182, 183, 185, 187, 188, 189, 191, 194,
195, 197, 198, 199

• Validation: 2, 16, 17, 23, 26, 32, 36, 48, 52, 53, 57, 60,
61, 64, 69, 72, 73, 77, 80, 81, 84, 91, 100, 108, 110,
112, 122, 126, 127, 131, 133, 136, 142, 153, 158, 159,
166, 176, 192, 196

• Testing: 4, 42, 46, 65, 92, 94, 98, 106, 115, 119, 121,
124, 146, 173, 174, 181, 184, 186, 190, 193

4. Visual Results

In addition to the quantitative results for ELAS [6], SGM
[7], CPM [9], FlowFields++ [15], and SceneFlowFields
[16] presented in the main paper in Tables 2 to 5, we pro-
vide visual examples on the different data sets in Figure 10.
For each combination of matching algorithm and data set,
we show the corresponding images, the estimated matches
using the original feature descriptor, and matches computed
with our SDC features. Please note that we do not tune
any algorithm for our new descriptor. We replace the fea-
ture descriptor and change nothing else. For each matching
result, we also give an error map indicating where the es-
timate exceeds an endpoint error of 3 pixels (>3px). The
color encoding for these error maps is shown in Figure 8.

0 px  3 px max

Figure 8: Color encoding of the endpoint error in the error
maps in Figures 10a to 10o.

In case of scene flow (Figure 10o), we split the visualiza-
tion of the estimated result into optical flow and two dispar-
ity maps. Since CPM [9] computes sparse matches in 3× 3

blocks only, we dilate the visualization for matches and er-
ror maps. More results can be found in our supplementary
video https://youtu.be/RoxfVdfqWpY.
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Figure 9: Randomly sampled training triplets. For each reference patch, we select a corresponding patch according to the
ground truth displacement and a negative correspondence by adding a random offset to the ground truth.
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(a) Stereo matching result for ELAS [6] on KITTI [11]. Quantitative results are given in Table 2 of the main paper.
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(b) Stereo matching result for SGM [7] on KITTI [11]. Quantitative results are given in Table 2 of the main paper.
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(c) Stereo matching result for ELAS [6] on Middlebury [13]. Quantitative results are given in Table 2 of the main paper.
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(d) Stereo matching result for SGM [7] on Middlebury [13]. Quantitative results are given in Table 2 of the main paper.
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(e) Stereo matching result for ELAS [6] on ETH3D [14]. Quantitative results are given in Table 2 of the main paper.
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(f) Stereo matching result for SGM [7] on ETH3D [14]. Quantitative results are given in Table 2 of the main paper.
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(g) Optical flow result for CPM [9] on KITTI [11]. Quantitative results are given in Table 4 of the main paper.
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(h) Optical flow result for FlowFields++ [15] on KITTI [11]. Quantitative results are given in Table 3 of the main paper.
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(i) Optical flow result for CPM [9] on Sintel [4]. Quantitative results are given in Table 4 of the main paper.
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(j) Optical flow result for FlowFields++ [15] on Sintel [4]. Quantitative results are given in Table 3 of the main paper.
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(k) Optical flow result for CPM [9] on Middlebury [2]. Quantitative results are given in Table 4 of the main paper.
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(l) Optical flow result for FlowFields++ [15] on Middlebury [2]. Quantitative results are given in Table 3 of the main paper.
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(m) Optical flow result CPM [9] on HD1K [10]. Quantitative results are given in Table 4 of the main paper.



Left Image Right Image

Original Result Result with SDC

Error Map for Original Result Error Map for Result with SDC

(n) Optical flow result for FlowFields++ [15] on HD1K [10]. Quantitative results are given in Table 3 of the main paper.
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(o) Scene flow result for SceneFlowFields [16] on KITTI [11]. Quantitative results are given in Table 5 of the main paper.

Figure 10: Visual comparison of different matching algorithms for stereo disparity, optical flow, and scene flow on different
data sets. For each combination, we show the original matching result and the results using our SDC feature descriptor. We
do not change anything but the feature descriptor. With our SDC feature network, matching is more accurate (less outliers,
sharper boundaries, smoother surface areas) and much denser (more matches over the complete image).


