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A. Supplementary material
This supplementary material provides additional details

illustrating the proposed approach. Specifically, Sec. A.1
describes how the affine training is regularized in an epoch-
dependent way. Sec. A.2 shows registration performance
for different numbers of steps for the affine registration-part
of the network. Sec. A.3 details the structure of the momen-
tum generation network. Lastly, Sec. A.4 shows additional
registration examples.

A.1. Affine regularization factor

Figure 1. Graph of the affine regularization factor. Its value de-
cays to zero over the epochs.

To help with convergence of the affine registration net-
work, we use an epoch-dependent regularization factor,
which discourages large transformations at the start of the
training. Specifically, we define this epoch-dependent regu-
larization factor as

λar :=
CarKar

Kar + en/Kar
, (1)

where Car is a constant, Kar controls the decay rate, and
n is the epoch count. Fig. 1 shows the value of λar plot-
ted over the epochs. As the value decays to zero with the
epochs, its influence on the training becomes negligible. For
both longitudinal and cross-subject experiments, Kar is set
to 4 and Car is set to 10.

Figure 2. Multi-step Affine registration results over iteration
steps. The affine network is trained using three steps for longitu-
dinal registration (red) and five steps for cross-subject registration
(blue). Performance increases with steps and finally saturates.

A.2. Dice over steps in Multi-step Affine Network

The main manuscript shows the average Dice scores over
the number of test iteration steps for the vSVF registration
component. For completeness, Fig. 2 shows the average
Dice scores over the number of steps for the affine net-
work. The model is trained using a three-step affine net-
work for longitudinal registrations and using five steps for
cross-subject registration. Similar to the vSVF registration,
it can be observed that model performance improves with
large number of steps and saturates at a high performance
level.

A.3. Structure of Momentum Generation Network

As the network structure itself is not the main contribu-
tion of our work, we do not describe it in detail in the main
manuscript. For completeness, we describe the architecture
here. Fig. 3 shows the structure of the Momentum Gener-
ation Network. It takes a pair of images as the input and
outputs a low-resolution initial momentum. We use a four-
level U-net [4, 2] with residual links, but remove the last
decoder level to output the low-resolution momentum. As
the momentum can be positive or negative, no activation
function (e.g. ReLu [3] or leakyRelu [1]) is used after the
last two convolutional layers, which output the momentum.



Figure 3. Illustration of the structure of Momentum Generation Network. It follows the structure of the U-net but the last level decoder is
removed.

A.4. Visualization

To provide more insight into the registration behavior of
our network, we visualize results illustrating deformation
folds, results for different steps in the multi-step approach,
and additional examples. Specifically, we show the follow-
ing:

• Folds: To better visualize the folds produced by the
multi-step vSVF, we report the registration results,
shown in Fig. 4, from the six-step vSVF. These folds
mostly occur at regions of anatomical inconsistency or
at the image boundary where map interpolation arti-
facts may influence the solution. In these regions, very
large momentum values may be predicted which can
result in folds due to discretization artifacts when inte-
grating the advection equation.

• Multi-step in vSVF registration: Fig. 5 shows the reg-
istration results over the steps of the vSVF. Although
folds may result from the multi-step strategy in some
very large deformation cases, the transformation maps
are largely well regularized. We observe that the reg-
istration results improve over the steps.

• More AVSM examples: Fig. 6 shows additional AVSM
registration results. It can be observed that AVSM
achieves good registration results with smooth trans-
formation maps for cases with large and small defor-
mations.
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Figure 4. Examples of folds produced by a six-step vSVF (trained using a two-step vSVF). Each column refers to an example registration
case. From top to bottom source, target, warped image by AVSM and warped image with deformation grid (visualizing Φ−1) are shown.
Folds are shown in gray. From left to right, the first three columns refer to cases with anatomical inconsistency and the last column refers
to a case where the folds occur at the boundary.



Figure 5. Illustration of the results of one registration case (with six steps) by AVSM (trained using a two-step vSVF). From left to right,
each column shows results for different steps. The first five rows refer to source, target, warped image by AVSM, warped image with
deformation grid (visualizing Φ−1) and warped image by the multi-step affine network respectively. The last three rows show the source
label, target label and warped label for the AVSM result. The transformation map gets refined over the six steps and the registration result
improves as indicated by a better correspondence between the target label and the warped label images (last two rows).



Figure 6. Illustration of results of six registration cases by AVSM. Each column refers to an example registration case. The first five
rows refer to source, target, warped image by AVSM, warped image with deformation grid (visualizing Φ−1) and warped image by the
multi-step affine network respectively. The last three rows show the source label, target label and warped label by AVSM. There is high
similarity between the warped and the target images and the deformations are smooth, illustrating the good registration performance of our
proposed AVSM approach.


