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In this supplementary material, we include more imple-
mentation details and compare with more baselines (previ-
ous works on caricature generation). We also compare dif-
ferent transformation methods, show more results on abla-
tion study and texture styles and show caricature generation
results on a selfie dataset.

1. Implementation Details
Preprocessing We align all the images with five land-
marks (left eye, right eye, nose, mouth left, mouth right) us-
ing the ones provided in the WebCaricature dataset [1] pro-
tocol. Since the protocol does not provide the locations of
eye centers, we estimate them by taking the average of the
corresponding eye corners. Then, a similarity transforma-
tion is applied for all the images using the five landmarks.
The aligned images are resized to 256 × 256. The whole
dataset consists of 6, 042 caricatures and 5, 974 photos from
252 identities. We randomly split the dataset into a training
set of 126 identities (3, 016 photos and 3, 112 caricatures)
and a testing set of 126 identities (2, 958 photos and 2, 930
caricatures). All the testing images in the main paper and
this supplementary material are from the identities in
the testing split.

Experiment Settings We conduct all experiments using
Tensorflow r1.9 and one Geforce GTX 1080 Ti GPU. The
average speed for generating one caricature image on this
GPU is 0.082s.

Architecture Our network architecture is modified based
on MUNIT [2]. Let c7s1-k be a 7× 7 convolutional layer
with k filters and stride 1. dk denotes a 4 × 4 convolu-
tional layer with k filters and stride 2. Rk denotes a residual
block that contains two 3 × 3 convolutional layers. uk de-
notes a 2× upsampling layer followed by a 5 × 5 convolu-
tional layer with k filters and stride 1. fck denotes a fully
connected layer with k filters. avgpool denotes a global
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average pooling layer. We apply Instance Normalization
(IN) [3] to the content encoder and Adaptive Instance Nor-
malization (AdaIN) [4] to the decoder. No normalization is
used in the style encoder. We use Leaky ReLU with slope
0.2 in the discriminator and ReLU activation everywhere
else. The architectures of different modules are as follows:

• Style Encoder:
c7s1-64,d128,d256,avgpool,fc8

• Content Encoder:
c7s1-64,d128,d256,R256,R256,R256

• Decoder:
R256,R256,R256,u128,u64,c7s1-3

• Discriminator:
d32,d64,d128,d256,d512,fc512,fc3M

A separate branch of 1 × 1 convolutional layer with 3 fil-
ters and stride 1 is attached to the last convolutional layer
of the discriminator to output D1, D2, D3 for patch adver-
sarial losses. The style decoder (the multi-layer perceptron)
has two hidden fully connected layers of 128 filters without
normalization and the warp controller has only one hidden
fully connected layer of 128 filters with Layer Normaliza-
tion [5]. The length of the latent style code is set to 8.

2. Additional Baselines
In the main paper, we compared WarpGAN with state-

of-the-art style transfer networks as baselines. Here,
we compare WarpGAN with other caricature generation
works [6, 7, 8, 9, 10, 11]. Since these methods do not re-
lease their code and use different testing images, we crop
the images from their papers and compare with them one
by one. All the baseline results are also taken from their
original papers. The results are shown in Figure 1.

3. Transformation Methods
To see the advantage of the proposed control-points es-

timation for automatic warping, we train three variants
of our model by replacing the warping method with (1)
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Figure 1: Comparison with previous works on caricature generation. In each cell, the left and middle images are the input
and result images taken from the baseline paper, respectively. The right images are the results of WarpGAN.

projective transformation, (2) dense deformation and (3)
landmark-based warping. In projective transformation, the
warp controller outputs 8 parameters for the transformation
matrix. In dense deformation, the warp controller outputs
a 16 × 16 deformation grid, which is further interpolated
into 256× 256 for grid sampling. In landmark-based warp-
ing, we use the landmarks provided by Dlib1 and the warp
controller only outputs the displacements. As shown in Fig-
ure 3, the warping is too limited in projective transformation
for generating artistic caricatures and too unconstrained in
dense deformation that it is difficult to train. Landmark-
based warping yields reasonable results, but it is limited by
the landmark detector. In comparison, our methods does
not require any domain knowledge, has little limitation and
leads to visually satisfying warping results.

4. More Results

Ablation Study We show more results of the ablation
study in Figure 2. The results are consistent with those in
the main paper: (1) the joint learning of texture rendering
and warping are crucial for generating realistic caricature
images and (2) without patch adversarial loss or identity-
preservation adversarial loss, the model cannot learn to gen-

1http://dlib.net/face_landmark_detection.py.
html

erate caricatures with various texture styles and shape exag-
geration styles.

Different Texture Styles More results of texture style
controlling are shown in Figure 4. Five latent style codes
are randomly sampled from the normal distributionN (0, I).
Images in the same column in Figure 4 are generated with
the same style code.

Selfie Dataset To test the performance of our model in
more application scenarios, we download the public Selfie
dataset2 [12] for cross-dataset evaluation. The dataset in-
cludes 46, 836 public selfies crawled from Internet. Unlike
our training dataset (WebCaricature), the identities in this
dataset are not restricted to celebrities and there is a differ-
ence between the visual styles of these images and the ones
in our training dataset. The results are shown in Figure 5.

2http://crcv.ucf.edu/data/Selfie/
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Figure 2: More results on ablation study. Input images are shown in the first column. The subsequent columns show the
results of different models trained without a certain module or loss. The texture style codes are randomly sampled from the
normal distribution.
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Figure 3: Different transformation methods. Input images are shown in the first column. The next four columns show the
results and the transformation visualizations of four different models trained with different transformation methods. The
landmark-based model uses 68 landmarks detected by Dlib. Texture rendering is hidden here for clarity.
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Figure 4: Results of five different texture styles. Input images are shown in the first column. Subsequent five columns show
the results of WarpGAN using five style codes sampled randomly from the normal distribution. All the images in the same
column are generated with the same latent style code.



Figure 5: Example results on the Selfie dataset. This is a cross-dataset evaluation and no training is involved. In each pair,
the left image is the input and the right image is the output of WarpGAN with a random texture style.
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