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1. Natural Manifold Discrimination

An example of our proposed LR-HR model of the natu-
ral manifold is illustrated in Figure 1, which also shows our
implementation and example images for training our NMD.
Specifically, Figure 1a shows how I 4 looks like in real im-
plementation. As shown, I4 is a convex combination of
bicubic interpolated image h(Ig)" and ground-truth high-
resolution image Iyr with a = 0.8. When we down-
sample 14 using the bicubic kernel, it is very close to the
I, r with PSNR about 45 dB in RGB colorspace.

Figure 1b shows how Iy is synthesized. We exaggerate
the noise by using o = 0.5 for better visualization and ex-
planation. The noise is injected only in the last column and
row of 8 x 8 block-wise DCT coefficients. When we down-
sample Ip with bicubic kernel, its similarity with Iz in
terms of PSNR is about 60 dB. When we use 0 = 0.1, we
obtained the PSNR between h(Iz)* and I about 75 dB.

2. Discriminator Architecture for GAN

For the discriminator in our GAN-based method, we
employ a VGG-like [8] structure shown in Figure 2. In-
stead of using max-pooling operations, we adopt convolu-
tion layers with stride 2. Also, we use one convolution layer
followed by a global average pooling operation instead of
fully-connected layers. We apply leaky ReLU for all con-
volution layers except the last one and also adopt spectral
normalization [6] for all convolution weights.

3. Mean Opinion Score (MOS)

We conduct MOS test on DIV2K validation set [9] for
subjective quality assessment. Specifically, six examples
(HR, nearest neighbor (NN), EDSR [4], EnhanceNet [7],
SFT-GAN [10], NatSR) are shown to the subjects. Two im-
ages, HR and NN is to calibrate human raters as 5 (good
quality) and O (bad quality) score for each, and other four
images are randomly shuffled and shown. We asked 21 hu-
man raters to score the images considering the naturalness
and perceptual quality. Since DIV2K set is too large to see

(b) Hlustration of a specific example of /5 (noisy).
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Figure 2: The discriminator network architecture for adver-
sarial training.
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the effect, the cropped 400 x 400 center pixels are evaluated.

Table 1 and Figure 3 shows the overall results. The
best MOS result is highlighted in bold. As shown, our
NatSR shows the best result and SFT-GAN rates similar
to ours. EDSR scores the worst due to its blurriness. We
also measured ANOVA (ANalysis Of VAriance) between
SFT-GAN and our NatSR. The result is p = 0.15 which



Method | MOS |
EDSR 2.13
ENet 2.84
SFT-GAN 3.21
NatSR (Ours) | 3.42

Table 1: Mean Opinion Score result on average. The best

result is highlighted in bold.
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Figure 3: Mean Opinion Score distribution.

shows less significance (p > 0.05) between SFT-GAN and
NatSR. One more interesting result we found is that SFT-
GAN scores mostly higher than NatSR on the images with
animals with fur or feathers which is the part of semantic
categories whereas our NatSR scores better in other images.
As SFT-GAN works in two steps (semantic segmentation
and super-resolution with additional super-vision), we be-
lieve that our NatSR is more versatile than SFT-GAN since
ours works in end-to-end fashion without any supervision
to the network.

4. More Visualization Results

We also visualize more results of our NatSR with other
comparisons from the next page.
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Figure 4: Visualized results on “0812” of DIV2K validation set [9].
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Figure 5: Visualized results on “0827” of DIV2K validation set [9].
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Figure 6: Visualized results on “0830” of DIV2K validation set [9].
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Figure 7: Visualized results on “0841” of DIV2K validation set [9].
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Figure 8: Visualized results on “0887” of DIV2K validation set [9].
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Figure 9: Visualized results on “19021” of BSD100 [5].
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Figure 10: Visualized results on “37073” of BSD100 [5].



SRGAN [3]

ENet [7]

Bicubic EDSR [4] FRSR (Ours) NatSR (Ours)

Figure 11: Visualized results on “butterfly” of Set5 [1].
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Figure 12: Visualized results on “014” of Urban100 [2].
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Figure 13: Visualized results on “018” of Urban100 [2].
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Figure 14: Visualized results on “022” of Urban100 [2].



