
Pushing the Boundaries of View Extrapolation with Multiplane Images:
Supplementary Materials

Pratul P. Srinivasan1 Richard Tucker2 Jonathan T. Barron2

Ravi Ramamoorthi3 Ren Ng1 Noah Snavely2

1UC Berkeley, 2Google Research, 3UC San Diego

1. Supplementary Video

We have included a supplementary video that compares
renderings from MPIs predicted by our model to those pre-
dicted by the original MPI method [6] and the “Disocclu-
sion Inpainting” baseline that inpaints disoccluded pixels
in each rendering using a state-of-the-art deep learning ap-
proach [5]. We invite readers to view this video for qualita-
tive evidence of our method’s ability to produce improved
renderings with fewer depth discretization and repeated tex-
ture artifacts compared to the original MPI method, and
with more convincing temporally-consistent disocclusions
compared to the “Disocclusion Inpainting” baseline.

2. Section 3.2 Derivation Details

In this section, we provide additional details for the
derivations in Section 3.2 of our main manuscript.

Figure 1 illustrates a 2D slice of the camera setup ge-
ometry where we hold the y dimension constant and view
the xz-plane. An MPI in the frame of the reference camera
(green dot) is viewed by a novel view camera (blue dot) at
a translation (u, s) relative to the reference camera. x is the
pixel coordinate of the red diffuse scene point on the blue
camera’s sensor plane, and x′ is the pixel coordinate of the
red scene point on the visualized MPI plane at disparity d.
Note that the MPI plane pixel coordinate x′ scales linearly
with 1/d, because each MPI plane RGBα image contains
the same number of pixels sampled evenly within the cam-
era frustum. It is straightforward to use the similar triangles
of this diagram (above and to the right of the blue dot) to
derive Equation 1 of our main manuscript:

ru,s(x) =
∑
d∈D

c(x′, d) =
∑
d∈D

c ((1− sd)x+ ud, d) (1)

where c(x, d) is the pre-multiplied RGBα at each pixel co-
ordinate x and disparity plane d within the set of MPI dis-
parity planes D. Note that u and s are in units of pixels
(such that the camera focal length f = 1), and we limit s to

{{

{ {
{

{

x′/d

u

1

x

s

1

d

Figure 1. Camera setup geometry. An MPI in the frame of a
reference camera (green dot) is viewed by a novel camera position
(blue dot) at a translation (u, s) relative to the reference camera.

the range −∞ < s < 1/dmax because renderings are not de-
fined for viewpoints within the MPI volume. Additionally,
note that the disparity d is in units 1/pixel.

We wish to study the limits of views rendered from an
MPI, so let us consider a worst-case MPI with content in the
subset of closest planes, for which we make a locally linear
approximation to the coordinate transformation (x, d) →
(x′, d):

ru,s(x) =
∑
d∈D

c ((1− sdmax)x+ ud, d) (2)

where dmax is a constant. Now, we have expressed the ren-
dering of mutually-visible content as a sheared and dilated
integral projection of the MPI. We apply the generalized
Fourier slice theorem [4] to interpret this integral projection
of an MPI as a 2D slice through the 3D MPI’s Fourier trans-
form. Using operator notation, the generalized Fourier slice

theorem can be expressed as:

FM ◦ INM ◦ B ≡ SNM ◦
B−T
|B−T| ◦ F

N (3)

where FM is the M-dimensional Fourier transform op-
erator, INM is the integral projection operator of an N-
dimensional function to M dimensions by integrating out
the last N − M dimensions, B is a basis transformation
operator (where |B−T| is the determinant of the inverse
transpose of the transformation matrix), and SNM is the slic-
ing operator that takes an M-dimensional slice from an N-
dimensional function by setting the last N −M dimensions
to zero. The relevant values of the resulting transformation
of MPI’s Fourier transform, given the sheared and dilated
MPI in Equation 2, are:

B =

[
(1− sdmax) u

0 1

]
B−T =

1

1− sdmax

[
1 0
−u (1− sdmax)

] (4)

We use these values to express the Fourier transformation
of our sheared and dilated MPI as:

C(kx′ , kd) = C

(
kx

1− sdmax
,
−ukx

1− sdmax
+ kd

)
(5)

where C(kx, kd) is the Fourier transform of c(x, d). We
omit the 1/|B−T| term since it is simply a scaling factor and
can be absorbed into the definition of C. Finally, we com-
pute the resulting rendered view as the inverse Fourier trans-
form of the slice taken from the MPI’s Fourier transforma-
tion by setting kd = 0:

ru,s(x) = F−1
{
C

(
kx

1− sdmax
,
−ukx

1− sdmax

)}
(6)

where F−1 is the inverse Fourier transform. This connects
our detailed supplementary derivation back with Equation 3
in the main manuscript.

3. Network Architecture and Training Details

Table 1 contains precise specifications of the 3D con-
volutional neural network architecture described in Section
3.3 of the main manuscript.

We implement our system in TensorFlow [1]. We train
using the Adam algorithm [2] for 300,000 iterations, with a
learning rate of 2×10−4, default parameters β1 = 0.9, β2 =
0.999, and a batch size of 1.

For our randomized-resolution training, we uniformly
sample input PSV tensors with sizes [height, width,
#planes, #channels] of any of the following:

R
ef

er
en

ce
 V

ie
w

Ta
rg

et
 V

ie
w

D
is

oc
cl

ud
ed

 P
ix

el
s

Figure 2. Computed disocclusion masks. We visualize example
disocclusion masks for target view pixels that are occluded in the
reference view, as used for our quantitative evaluations.

[576, 1024, 24, 6]
[576/2, 1024/2, 25, 6]
[576/4, 1024/4, 25, 6]
[576/4, 1024/4, 26, 6]
[576/4, 1024/4, 27, 6]
[576/8, 1024/8, 25, 6]
[576/8, 1024/8, 26, 6]
[576/8, 1024/8, 27, 6]

At test time, we apply this network on input PSV tensors
with size [576,1024,27,6], which has the maximum spatial
and depth resolutions seen during training.

4. Disocclusion Mask Examples
Figure 2 visualizes disocclusion masks computed by our

method (Equation 12 in the main manuscript) between pairs
of reference and target viewpoints.

5. “rinit + Adversarial Disocclusions” Details
As described in our main manuscript, “rinit + Adversar-

ial Disocclusions” is a two-step MPI prediction strategy we
use as a baseline for comparisons. It uses an identical Φ1

to predict the initial MPI, but Φ2 directly predicts RGBα
layers instead of flows, and we apply an adversarial loss to
each final rendered target image to encourage realistic dis-
occlusions. We adopt the SN-PatchGAN discriminator ar-
chitecture with spectral normalization [3] and a hinge loss
objective function, as proposed in [5]. We add the adver-
sarial loss to our main objective (Equation 10 in the main
manuscript) with a weight λ = 5.0.

Downsampling
1-3 (3× 3× 3 conv, 8 features) ×3 H ×W ×D × 8
4 3× 3× 3 conv, 16 features, stride 2 H/2×W/2×D/2× 16

5-6 (3× 3× 3 conv, 16 features) ×2 H/2×W/2×D/2× 16
7 3× 3× 3 conv, 32 features, stride 2 H/4×W/4×D/4× 32

8-9 (3× 3× 3 conv, 32 features) ×2 H/4×W/4×D/4× 32
10 3× 3× 3 conv, 64 features, stride 2 H/8×W/8×D/8× 64

11-12 (3× 3× 3 conv, 64 features) ×2 H/8×W/8×D/8× 64
13 3× 3× 3 conv, 128 features, stride 2 H/16×W/16×D/16× 128

14-15 (3× 3× 3 conv, 128 features) ×2 H/16×W/16×D/16× 128
Bottleneck

16 3× 3× 3 conv, 128 features, dilation rate 2 H/16×W/16×D/16× 128
17 3× 3× 3 conv, 128 features, dilation rate 4 H/16×W/16×D/16× 128
18 3× 3× 3 conv, 128 features, dilation rate 8 H/16×W/16×D/16× 128
19 3× 3× 3 conv, 128 features H/16×W/16×D/16× 128

Upsampling
20 2× nearest neighbor upsample H/8×W/8×D/8× 128
21 concatenate 20 and 12 H/8×W/8×D/8× (128 + 64)

22-23 (3× 3× 3 conv, 64 features) ×2 H/8×W/8×D/8× 64
24 2× nearest neighbor upsample H/4×W/4×D/4× 64
25 concatenate 24 and 9 H/4×W/4×D/4× (64 + 32)

26-27 (3× 3× 3 conv, 32 features) ×2 H/4×W/4×D/4× 32
28 2× nearest neighbor upsample H/2×W/2×D/2× 32
29 concatenate 28 and 6 H/2×W/2×D/2× (32 + 16)

30-31 (3× 3× 3 conv, 16 features) ×2 H/2×W/2×D/2× 16
32 2× nearest neighbor upsample H ×W ×D × 16
33 concatenate 32 and 3 H ×W ×D × (16 + 8)

34-35 (3× 3× 3 conv, 8 features) ×2 H ×W ×D × 8
36 3× 3× 3 conv, 4 features (tanh) H ×W ×D × 4

Table 1. 3D CNN network architecture. Our initial MPI pre-
diction CNN Φ1 uses the architecture described in the above table.
Our final MPI prediction CNN Φ2 uses the same architecture with-
out the bottleneck dilated convolutional layers. All convolutional
layers in Φ1 and Φ2 use a ReLu activation, except for the final
layer. Φ1 applies a tanh to all channels of the final layer, while Φ2

just applies a tanh on one output channel (corresponding to α) and
does not apply an activation to the predicted flows.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. 2

[2] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. ICLR, 2015. 2

[3] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spec-
tral normalization for generative adversarial networks. ICLR,
2018. 2

[4] R. Ng. Fourier slice photography. In ACM Transactions on
Graphics (SIGGRAPH), 2005. 1

[5] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Gener-
ative image inpainting with contextual attention. CVPR, 2018.
1, 2

[6] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo
magnification: Learning view synthesis using multiplane im-
ages. In ACM Transactions on Graphics (SIGGRAPH), 2018.
1

