
6. Supplementary Material
6.1. Proof that Magnitude-Rewarding Functions

Suffer Worse Aperture-Uncertainty
In Section 2.1 we discuss why magnitude-rewarding rewards

are likely to fail on line features (due to aperture uncertainty), to-
gether with a visual example (Fig. 4) and plots of line features in
real data (Fig. 6). Here we will prove this notion geometrically.

As a line feature moves across the image, it generates a plane of
events. If one only considers event warp trajectories that run paral-
lel to the plane, the possible trajectories become two-dimensional
- we can thus model the event plane as a rectangle of height h and
width w (see Fig. 13).

Computing the sum of event accumulations along the actual
trajectory of the line feature then just becomes

∫ b

a

hdx, (9)

with the rSoS

rSoS =

∫ b

a

h2dx. (10)

Likewise, incorrect projections parallel to the plane of events can
now be modeled by rotations of the rectangle around point b by
some angle ϕ (see Fig. 14), where essentially we rotate the events
instead of rotating the warp vector.

The accumulation of events can now be written as a piecewise
function over the regions A, B, C, which are bounded by the lines
f1(x), f2(x), f3(x) and f4(x). If I is set to equal (0, 0), then

I = (0, 0) (11)

II = (−w cos(ϕ), w cos(ϕ)) (12)

III = (−w cos(ϕ) + h sin(ϕ), w cos(ϕ) + h cos(ϕ)) (13)

IV = (h sin(ϕ), h cos(ϕ)). (14)

Thus,

f1(x) = − tan(ϕ)x (15)

f2(x) = x cot(ϕ) + w csc(ϕ) (16)

f3(x) = h sec(ϕ)− x tan(ϕ) (17)

f4(x) = cot(ϕ)x (18)

The function for the sum of accumulations can now be written
as the piecewise function

fsum(x) =









csc(ϕ)(w + x sec(ϕ)) a ≤ x < d

h sec(ϕ) d ≤ x < b

sec(ϕ)(h− x csc(ϕ)) b ≤ x < c

b > d





csc(ϕ)(w + x sec(ϕ)) a ≤ x < b

w csc(ϕ) b ≤ x < d

sec(ϕ)(h− x csc(ϕ)) d ≤ x < c

b ≤ d

(19)
The double piecewise function is necessary, since there are two

distinct cases as ϕ increases (see Fig. 15); that when b > d and
that when b ≤ d.

The integral of fsum(x) is

∫ c

a

fsum(x) =

{
h2 tan(ϕ) + h(w − h tan(ϕ)) b > d

w2 cot(ϕ) + w(h− w cot(ϕ)) b ≤ d,
,

(20)
which after a bit of rearranging comes out as

∫ c

a

fsum(x) =

{
hw b > d

hw b ≤ d,
(21)

(as one would expect, since the area of the original rectangle is
invariant). If we now however look as the rSoS of the rotated rect-
angle, things are a little more interesting. To get this, we simply
integrate the square of fsum(x):

fsum(x)
2 =









csc(ϕ)2(w + x sec(ϕ))2 a ≤ x < d

h2 sec(ϕ)2 d ≤ x < b

sec(ϕ)2(h− x csc(ϕ))2 b ≤ x < c

b > d





csc(ϕ)2(w + x sec(ϕ))2 a ≤ x < b

w2 csc(ϕ)2 b ≤ x < d

sec(ϕ)2(h− x csc(ϕ))2 d ≤ x < c

b ≤ d

(22)
and
∫ c

a

fsum(x)
2 =

{
2
3
h3 tan(ϕ) sec(ϕ) + sec(ϕ)h2w b > d

2
3
w3 cot(ϕ) csc(ϕ) + csc(ϕ)w2h b ≤ d

(23)

= rSoS (24)

This integral is the familiar rSoS. If we plot (23) for 0 ≤ ϕ ≤
π/2, w = 10 and a range of values for h (see Fig. 16), we see that
the actual maximum of the rSoS is only at ϕ = 0 (as it should be),
when h >> w.

In the case of events, the “height” of the event plane is only
much greater than the width when a lot of time passes, since the
time axis is the equivalent of h in this analogy. This shows rather
neatly, not only why magnitude-rewarding rewards fail with line
features, but that this uncertainty is dependent on the accumulation
time.

(a)

Figure 13: The event plane represented as a rectangle; the
actual trajectory of the line feature is shown as the dashed
arrows.



(a)

Figure 15: Two situations exist for 0 ≤ ϕ ≤ π/2: that d ≤ b
(black) and b ≤ d (blue)
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(a)

Figure 16: Plot of the rSoS for various ratios of w/h, over
0 ≤ ϕ ≤ π/2.

We can show this formally too; looking at the equations

2

3
h3 tan(ϕ) sec(ϕ) + sec(ϕ)h2w (25)

2

3
w3 cot(ϕ) csc(ϕ) + csc(ϕ)w2h (26)

from (23), note that (25) is monotonically increasing for all values
of 0 ≤ ϕ ≤ π/2 in the range b > d and that (26) is monotonically
decreasing for all values of 0 ≤ ϕ ≤ π/2 in the range b ≤ d (for
fixed values of w and h, a valid assumption since the dimensions
of the event plane don’t change). This means that the maximum of
the total function (23) is at the point where (25) = (26). Then

h2

w2
= cot2(ϕ) (27)

and

ϕ = cot−1

√
h2

w2
. (28)

Solving for ϕ = 0,

0 = cot−1

√
h2

w2
(29)

for which no solution exists. However,

lim
n→∞

cot−1 √x = 0. (30)

Therefore the ratio of h
w

must be very large in order to get the
correct trajectory of a line feature using magnitude-rewarding re-
wards.

The analogy for sparsity-rewarding rewards such as the rISoA is
of course the length of the range [a, c], since this corresponds to the
count of locations to which events have projected. The equation
describing this measure is

1

a− b
=

1

h sin(ϕ) + w cos(ϕ)
(31)

(a)

Figure 14: The event plane represented as a rectangle; dif-
ferent trajectories (parallel to the event plane) are repre-
sented by rotations of the rectangle around point b by ro-
tation ϕ.

This is a convex function on the range 0 ≤ ϕ ≤ π/2, therefore
the maximum must lie at either 0 or π/2 on 0 ≤ ϕ ≤ π/2 So the
problem becomes, for which w, h is

1

h sin(0) + w cos(0)
>

1

h sin(π/2) + w cos(π/2)
(32)

=
1

w
>

1

h
(33)

= h > w (34)

For a visualization of this, see the plots in Fig. 17. And
with that we have proven that optimizing contrast with sparsity-
rewarding functions can allow convergence to the true trajectory of
pure line segments, whereas magnitude rewarding functions can-
not.

6.2. Weighted Sums
Since the errors presented in Section 4 had different standard

deviations, we thought it would be worth looking at how weighted
combinations of magnitude- and sparsity-rewarding function per-
form. To this end we present the following plots in Fig. 18. To
generate these we estimated the optic flow of the office sequence
(see Section 4.3) various times using different weighted combina-
tions of the rSoS and rSoSA. The plots indicate that with no noise it
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(a) Error for weighted sum for event/noise ratio 1/0
(no noise).
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(b) Error for weighted sum for event/noise ratio 1/2.
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(c) Error for weighted sum for event/noise ratio 1/10.

Figure 18: Plots for the error of the estimates vs the sum
weights for weighted sums of rSoS and rISoA at different
event to noise ratios.
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Figure 19: Plot for the velocity estimates of various rewards
for various values of σ.
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(a) Plot of the rSoS for various ratios of w/h, over 0 ≤ ϕ ≤ π/2.
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(b) Plot of the rISoA for various ratios of w/h, over 0 ≤ ϕ ≤ π/2

Figure 17: Comparison of theoretical convergence behavior
of rSoS vs rISoA.

is better to use only rSoSA and if there is some to use a combina-
tion. If there is a lot of noise it is better to use rSoS. This supports
the conclusions drawn in the rest of the paper. Note that the rR1

and rR2 reward are still better than these linear combinations.

6.3. Blurring σ

In practice, convergence in optimizing the contrast is greatly
aided by applying a blurring kernel to the image of warped events.
In this experiment we aim to discover which value of σ is best for
which reward. To do this we estimated optical flow on the cir-
cle sequence (Section 4.2) using various blur sigmas. As can be
seen, the different rewards have quite different reactions to differ-
ent degrees of blurring. However, a value of σ = 1 seems to give
reasonable results across all of the rewards and is the value we
used in other experiments.


