
Kernel Transformer Networks for Compact Spherical Convolution

Yu-Chuan Su
The University of Texas at Austin

Kristen Grauman
Facebook AI Research

The University of Texas at Austin

The supplementary materials consist of:

A Complete architecture of KTN
B Experimental details
C Model transferability experiment on Pascal VOC
D Comparison of model accuracy versus depth
E Discussion of multiple projections baselines
F Additional qualitative detection examples

1. KTN Architecture

In this section, we show the complete architecture of
KTN. Fig. 1 shows how to apply KTN for spherical convo-
lution. For each layer l∈{1, · · · , L} of the source CNN,
we learn a function f l that transforms the source kernel
Kl to Kl

θi
for every θ ∈ [0, π]. The output kernel Kl

θi
is

then applied to the 360◦ equirectangular image at the corre-
sponding row of θi. We find that it is unnecessary to gen-
erate one kernel for each row in the equirectangular pro-
jection, because spherical convolution kernels for adjacent
rows are usually similar. In practice, we share the same
kernel every five rows to reduce the computational cost and
model size. Fig. 2 shows the full architecture of KTN. KTN
uses a ResNet-like architecture. For both branches, it uses
a row dependent channel-wise projection to resize the ker-
nel to the target size. The residual branch then applies two
depth separable convolution blocks before adding the out-
put with that of the shortcut branch. Each depth separable
convolution block consists of ReLU-pointwise conv-ReLU-
depthwise conv.

To compute the target kernel size at a given polar angle,
we first back project the receptive field of the source kernel
to equirectangular projection. The minimum bounding box
centered at the polar angle that can cover the receptive field
on equirectangular projection is then selected as the target
kernel shape. Note that we restrict the kernel height and
width to be an odd number to ensure that the kernel is de-
fined on the equirectangular pixel space. Because the size
of the back projected receptive field may grow rapidly and
span the entire image, we restrict the actual kernel width
and height to be less then 65 pixels and dilate the kernel to
increase the effective receptive field if necessary.

K1 f 1

(θ1, · · · , θN)

K1
θ1

K1
θN

··
·

θ

K2 f 2

(θ1, · · · , θN)

K2
θ1

K2
θN

··
·

θ

··
·

··
·

KL fL

(θ1, · · · , θN)

KL
θ1

KL
θN

··
·

θ

Source CNN

KTN

Inputs

θ

Figure 1: Application of spherical convolution using KTN.

K

θ
Inputs

θ

Channel-wise
Projection

1x1 Convolution

Depth-wise
Convolution

1x1 Convolution

Depth-wise
Convolution

θ

⊕
Kθ

Figure 2: Full architecture of KTN.

For Spherical Faster R-CNN, we define the bounding
boxes on the tangent plane: we project the features to the
tangent plane and apply the RPN and detector networks
there. The implementation is the same as SPHCONV [7].

2. Experimental Details
In this section, we describe additional experimental de-

tails that could not fit in the main paper.

2.1. Datasets
The following is an expanded version of the dataset de-

scriptions in the main text.
Spherical MNIST is constructed from the MNIST dataset

1



by backprojecting the digits into equirectangular projec-
tion. The resolution of the resultant 360◦ image is 160×80,
and the digit covers a 65.5◦ field-of-view (FOV). For the
training set, we project each digit to a random polar angle
θ∈[0, π]. For the test set, we project each digit to nine differ-
ent polar angles θ=8◦, 16◦, . . . , 72◦, which results in a test
set that is nine times larger. Note that we do not rotate the
digit itself because digits are oriented by definition (e.g. 6
versus 9). All baselines are trained to predict the digit la-
bel on the Spherical MNIST training set except SPHCONV,
which does not require such labels. Both KTN and SPH-
CONV are trained to re-produce the top-most convolution
output (conv3). Classification accuracy averaged across θ
is used as the evaluation metric.

Pano2Vid is a real world 360◦ video dataset [8]. It con-
tains 86 videos from four categories: “Hiking,” “Parade,”
“Soccer,” and “Mountain Climbing.” Following [7], we
sample 1,056 frames from the first three categories for train-
ing and 168 frames from the last category for testing, and
the frames are resized to 640×320 resolution. The root-
mean-square error (RMSE) over the final convolution out-
puts is used as the evaluation metric.

Pascal VOC is a perspective image dataset with object
annotations. Similar to Spherical MNIST, we backproject
the object bounding boxes to equirectangular projection but
with 640×320 resolution. Each bounding box is projected
to different polar angles θ∈{18◦, 36◦, 54◦, 72◦, 90◦} and
covers a 65.5◦ FOV. Because the perspective images do not
cover the full 360◦ FOV, regions outside the FOV of the
original image are zero-padded (black). This dataset is used
for evaluation only. Following the experiment setting of the
Faster R-CNN [6] source model, we evaluate all methods on
the validation set of Pascal VOC 2007. We use the accuracy
of the detector network in Faster R-CNN as the evaluation
metric. The ground truth bounding box is used for ROI-
pooling during evaluation for all methods.

2.2. Baselines

In this section, we expand on the implementation details
of each baseline method. We keep the number of layers and
kernels the same for all methods. For the Spherical MNIST
dataset, the models consist of three convolution layers fol-
lowed by a max-pooling over the spatial dimensions and a
fully connected layer. The convolution layers have 32, 64,
and 128 kernels respectively, and the resolution of the fea-
ture map is reduced by a factor of two using max-pooling
after each convolution layer. For the Pano2Vid and Pascal
VOC datasets, the models have the same number of layers
and kernels as the VGG16 architecture. Following SPH-
CONV [7], we remove the max-pooling operation in the net-
work and use dilated convolution with factor of two in the
conv5 layers to increase the receptive field. The differences
between different methods are in the convolution and pool-
ing operations as described below.

• EQUIRECTANGULAR—Apply ordinary CNNs on the
360◦ image in its equirectangular projection.

• CUBEMAP—Apply ordinary CNNs on the 360◦ image
in its cubemap projection, with cube padding [1]. For
the PANO2VID and PASCAL VOC datasets, the conv5 3
feature map is re-projected to equirectangular projection
as the final output.

• S2CNN [2]—We use the S2Convolution and
SO3Convolution in the authors’ implementation1

for convolution. S2Convolution is applied in the first
convolution layer, and SO3Convolution is used for the
other layers. The default near identity grid is used
for both S2 and SO3 convolution. Furthermore, we
reduce the feature map resolution by reducing the output
bandwidth instead of using max-pooling following
the authors’ implementation. The input resolution is
80×80 for Spherical MNIST and 64×64 for Pano2Vid
and Pascal VOC. For Spherical MNIST, we use SO(3)
integration instead of max-pooling to reduce the final
feature map. For Pano2Vid and Pascal VOC, because
the output of SO3Convolution is a 3D feature map, we
add a 1x1 convolution layer on top of the conv5 3 output
to generate a 2D feature map. The feature map is then
resized to 640×320 as the final output. We reduce the
output bandwidth in conv2 2 and conv3 3 and distribute
the model to four NVIDIA V100 GPUs using model
parallelism due to the GPU memory limit.

• SPHERICAL CNN [4]—We use the sphconv module in
the authors’ implementation2 for convolution. Similar to
S2CNN , we replace max-pooling with spectral pooling.
Furthermore, we apply batch normalization in each con-
volution layer following the example code. The input
resolution is 80×80 for all datasets. For the Pano2Vid
and Pascal VOC dataset, we reduce the output bandwidth
in conv4 1 and conv5 1 due to the memory limit. The
conv5 3 feature map is resized to 640×320 as the final
output.

• SPHERICAL U-NET [9]—We use the SphericalConv
module in Spherical U-Net3 for convolution. We apply
batch normalization and set the kernel size to 8×4 fol-
lowing the authors’ example. For the Pano2Vid and Pas-
cal VOC dataset, the input is resized to 160×80 due to
memory limit, and the conv5 3 feature map is resized to
640×320 as the final output. The model is distributed to
four NVIDIA V100 GPUs using model parallelism.

• SPHERENET [3]—We implement the SPHERENET
model using row dependent channel-wise projection. The
authors’ code and data were unavailable at the time of
submission. Because feature projection is the weighted
sum of the features, the projection weights can be com-

1https://github.com/jonas-koehler/s2cnn
2https://github.com/daniilidis-group/spherical-cnn
3https://github.com/xuyanyu-shh/Saliency-detection-in-360-video



18◦ 36◦ 54◦ 72◦ 90◦
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Pascal VOC

KTN
KTN-Transfer
Projected

Figure 3: Model transferability on Pascal VOC.

18◦ 36◦ 54◦ 72◦ 90◦
0

2

4

R
M

SE

Pascal VOC

KTN KTN-Transfer Projected
18◦ 36◦ 54◦ 72◦ 90◦
0

10

20

ImageNet

Figure 4: Model transferability of ImageNet trained VGG.

bined with the kernel weights as a single kernel. We de-
rive the weights of the channel-wise projection using the
feature projection operation and train the source kernels.
For the Pano2Vid dataset, we train each layer indepen-
dently using the same objective function as KTN because
the entire model cannot fit in GPU memory.

• SPHCONV [7]—We use the authors’ implementation4.
Because the model is too large to fit into GPU memory
even for evaluation, it is run on CPUs.5

• PROJECTED—Assuming that the kernel transformation f
can be modeled using the tangent plane-to-sphere projec-
tion, we derive the analytic solution for the kernels Kθ

using bilinear interpolation.

Note that the aspect ratio for the inputs is 1:1 for S2CNN
and SPHERICAL CNN. This is the requirement of the meth-
ods, so we reduce the resolution along the azimuthal angle.
The input aspect ratio for all other methods is 2:1 following
the common format of 360◦ images.

2.3. Training Details
We train all the methods using ADAM [5] for 40 epochs.

The learning rate is initialized to 1.0×10−3 and is decreased
by a factor of 10 after 20 epochs. We also apply L2 regu-
larization with weight 5×10−4. For Pano2Vid, the batch
size is set to one for S2CNN , two for Spherical CNN, and
four for all other methods, which is again limited by the

4https://github.com/sammy-su/Spherical-Convolution
5For the other baselines, testing is still possible with GPUs.

5 10

1

2

Depth

R
M

SE

SPHERENET [3]
PROJECTED
KTN (Ours)

Figure 5: Model accuracy at different layers.

memory. For Spherical MNIST, the batch size is set to 64
for all methods except S2CNN , which uses a batch size
of 16. The weights are randomly initialized using a nor-
mal distribution with standard deviation 0.01. The training
time for KTN on Pano2Vid is about a week using six AWS
p3.8xlarge instances with V100 GPUs.

3. Transferability on Pascal VOC

As noted in the main paper, in this section, we evaluate
the transferability of KTN on Pascal VOC. In particular, we
measure whether the KTN model trained on a VGG source
model can be applied to Faster R-CNN to perform object
detection. The result is in Fig. 3. Again, KTN performs
almost identical regardless of the source model on which
it is trained. We also evaluate the transferability between
VGG trained for ImageNet classification and Faster R-CNN
trained for Pascal object detection. The result is in Fig. 4.
The results are consistent with that in Sec. 4.3 of the main
paper and verifies that KTN is transferable across source
CNNs with the same architecture.

4. Model Accuracy versus Depth

As discussed in the main paper, the interpolation as-
sumption made by SPHERENET [3] and the PROJECTED
baselines is problematic, particularly at deeper layers as
errors accumulate. Hence, we compare the accuracy of
SPHERENET [3], PROJECTED, and KTN with different net-
work depths. We change the network depth by feeding in
the ground truth value of the intermediate layer and com-
pare the RMSE of conv5 3 outputs. The experiment is per-
formed on Pano2Vid using Faster R-CNN source model.

The results are in Fig. 5. Not surprisingly, the error in-
creases as the model depth increases for all methods. More
importantly, the gap between KTN and the other methods
increases as the network becomes deeper. The results sug-
gest that the error of interpolated features increases as the
number of non-linearities increases and is consistent with
the analysis in Sec. 3.4 in the main paper.



18◦ 36◦ 54◦ 72◦ 90◦
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Pascal VOC

Equirectangular
Cubemap
KTN

Figure 6: Model accuracy of projection based baselines.

5. Multiple Projections Baseline
Fig. 6 shows that the worst accuracy of KTN (at θ=18◦)

outperforms the best accuracy of EQUIRECTANGULAR and
CUBEMAP (at θ=90◦). While a possible method for im-
proving the performance of the projection based methods
(i.e. EQUIRECTANGULAR and CUBEMAP) is to aggregate
the detection results from multiple projections to reduce
the effect of distortion, the results suggest that EQUIRECT-
ANGULAR and CUBEMAP is less accurate then KTN even
if they are always evaluated on the less distorted region.
This implies that KTN will always be more accurate than
EQUIRECTANGULAR and CUBEMAP no matter how many
different projections we sample. Furthermore, evaluating
the model on multiple projections increases the computa-
tional cost and introduces the problem of how to combine
detection results, which is non-trivial especially in dense
prediction problems such as depth prediction.

6. Object Detection Examples
In this section, we show additional object detection ex-

amples. Fig. 8 and Fig. 9 show object detection examples
on the Pano2Vd and Pascal VOC dataset, respectively. No-
tice how KTN can detect the distorted objects by translating
the source CNN appropriately to the spherical data.

Fig. 7 show failure examples on the Pano2Vid dataset.
In the first example, the model fails to capture the entire
human body and returns two positive detections instead of
one. This is caused by the fact that our method cannot han-
dle close objects that cannot be captured by the FOV of per-
spective images. In the second example, the model fails on
the top view of the person because a top view is very rare
in ordinary images. The result indicates that the data distri-
bution is different in 360◦ images and perspective images.
The performance of the model may be further improved if
we can train the source CNNs on 360◦ images.

References
[1] Hsien-Tzu Cheng, Chun-Hung Chao, Jin-Dong Dong, Hao-

Kai Wen, Tyng-Luh Liu, and Min Sun. Cube padding for
weakly-supervised saliency prediction in 360◦ videos. In
CVPR, 2018. 2

Figure 7: Failure cases on Pano2Vid.

[2] Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling.
Spherical cnns. In ICLR, 2018. 2

[3] Benjamin Coors, Alexandru Paul Condurache, and Andreas
Geiger. Spherenet: Learning spherical representations for de-
tection and classification in omnidirectional images. In ECCV,
2018. 2, 3

[4] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia,
and Kostas Daniilidis. Learning so(3) equivariant representa-
tions with spherical cnns. In ECCV, 2018. 2

[5] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 3

[6] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 2

[7] Yu-Chuan Su and Kristen Grauman. Learning spherical con-
volution for fast features from 360◦ imagery. In NIPS, 2017.
1, 2, 3

[8] Yu-Chuan Su, Dinesh Jayaraman, and Kristen Grauman.
Pano2vid: Automatic cinematography for watching 360◦

videos. In ACCV, 2016. 2
[9] Ziheng Zhang, Yanyu Xu, Jingyi Yu, and Shenghua Gao.

Saliency detection in 360◦ videos. In ECCV, 2018. 2



Figure 8: Object detection examples on Pano2Vid. Figure 9: Object detection examples on 360-ified Pascal
VOC images.


