
A. Appendix
Proof of Proposition 1. Cycle consistency amounts to the
following property: Whenever there is a path p1, . . . , pk
with pi ∈ [d] and nodes s1, . . . , sk with si ∈ [mpi ] such that
X

[pipi+1]
sisi+1 = 1 then it must hold that X [p1pk]

s1sk = 1 as well.
The constraints X [pq]X [qr] ≤ X [pr] enforce the above con-
straints for paths of length three. By triangulation we can
extend this equation to paths of arbitrary length. We use the
path p1, . . . , pk with pi ∈ [d] as above. Then

X [p1p2] ·X [p2p3] · . . . ·X [pk−1pk]

≤X [p1p3] · . . . ·X [pk−1pk]

. . .

≤X [p1pk−1] ·X [pk−1pk]

≤X [p1pk] .

Example 1 (A minimal non-cycle consistent problem).
Consider the following multi-graph matching instance (1)
with d = 3 and mp = 2 ∀p ∈ [d]. Let

W [12] = W [13] = W [23] = diag(−1,−10,−10,−1) .
(24)

Then without cycle consistency constraints the optimal as-
signment will be

X [12] = X [13] = X [23] =

(
0 1
1 0

)
(25)

with objective value −60. After adding cycle-consistency
constraints an optimal solution is

X [12] = X [13] =

(
0 1
1 0

)
, X [23] =

(
1 0
0 1

)
(26)

with objective value −42.

A.1. Cutting planes with cycle consistency subprob-
lems

Algorithm 2 proceeds by first computing the dual lower
bound of all subproblems that are connected to a given cycle
consistency subproblem x[pqr],st (line 1). Then messages
are sent to x[pqr],st from all factors that are connected to it
(lines 2-9). Finally, the lower bound after these operations
is computed (line 10) and the initial reparametrization is re-
stored (lines 11-14).

Algorithm 2: Dual lower bound increase for x[pqr],st

/* lower bound without cycle

consistency subproblem x[pqr],st
*/

1 lb0 =

min
x∈Y [pr],s〈θ[pq],s

, x〉+ minx∈Y [qr],t〈θ[qr],t, x〉+

minx∈Y [pr],s〈θ[pr],s, x〉+ min
x∈Y [pr],t〈θ[pr],t

, x〉;
/* send messages to cycle

consistency subproblem x[pqr],st
*/

2 ∆
[pq],s

= msg(x[pq],s, x[pqr],st);
3 ∆[pq],t = msg(x[qr],t, x[pqr],st);
4 ∆[pr],t = msg(x[pr],t, x[pqr],st);

5 ∆
[qr],s

= msg(x[qr],s, x[pqr],st);

6 repam(∆
[pq],s

, x[pq],s, x[pqr],st);
7 repam(∆[pq],t, x[pq],t, x[pqr],st);
8 repam(∆[pr],t, x[pr],t, x[pqr],st);

9 repam(∆
[qr],s

, x[qr],s, x[pqr],st);
/* lower bound after adding cycle

consistency subproblem x[pqr],st
*/

10 lb1 =

min
x∈Y [pr],s〈θ[pq],s

, x〉+ minx∈Y [qr],t〈θ[qr],t, x〉+

minx∈Y [pr],s〈θ[pr],s, x〉+ min
x∈Y [pr],t〈θ[pr],t

, x〉+

min(a,b,c)∈Y [pqr],st〈θ[pqr],st, (a, b, c)〉;
/* restore original

reparametrization */

11 repam(−∆
[pq],s

, x[pq],s, x[pqr],st);
12 repam(−∆[pq],t, x[pq],t, x[pqr],st);
13 repam(−∆[pr],t, x[pr],t, x[pqr],st);

14 repam(−∆
[qr],s

, x[qr],s, x[pqr],st);
15 return lb1 − lb0;


