A. Proofs

The BLP relaxation [17] introduces a probability distribution μ_i over $\{0,1\}$ for each $i \in [d]$ and a probability distribution μ_t over dom f_t for each $t \in T$. It can be written as follows:

$$\min_{\mu \geq \mathbf{0}} \sum_{t \in T} \sum_{z \in \text{dom } f_t} \mu_t(z) f_t(z)$$
s.t.
$$\mu_i(0) + \mu_i(1) = 1 \qquad \forall i \in [d]$$

$$\sum_{z \in \text{dom } f_t} \mu_t(z) = 1 \qquad \forall t \in T$$

$$\sum_{z \in \text{dom } f_t: z_i = a} \mu_t(z)_i = \mu_i(a) \quad \forall t \in T, i \in A_t, a \in \{0, 1\}$$

$$(19)$$

Let us show that the optimal values of (19) and (3) coincide.

Proof of equivalence of (19) and (3). Define an extension $\hat{f}_t : \mathbb{R}^{A_t} \to \mathbb{R} \cup \{+\infty\}$ of function $\hat{f} : \{0,1\}^{A_t} \to \mathbb{R} \cup \{+\infty\}$ as follows: for a vector $x \in \mathbb{R}^{A_t}$ set

$$\hat{f}_{t}(x) = \min_{\mu_{t} \geq \mathbf{0}} \sum_{\substack{z \in \text{dom } f_{t} \\ s.t.}} \mu_{t}(z) f_{t}(z)$$

$$\text{s.t.} \sum_{\substack{z \in \text{dom } f_{t} \\ z \in \text{dom } f_{t}}} \mu_{t}(z) = 1$$

$$\sum_{\substack{z \in \text{dom } f_{t} \\ z \in \text{dom } f_{t}}} \mu_{t}(z) \cdot z = x$$

$$(20)$$

Note, if $x \notin [0,1]^{A_t}$ then (20) does not have a feasible solution, and so $\hat{f}_t(x) = +\infty$. Observe that the constraints in the last line of (19) for a=0 are redundant - they follow from the remaining constraints. Also observe that constraints $\sum_{z\in \text{dom } f_t: z_i=1} \mu_t(z)_i = \mu_i(1) \text{ for } i \in A_t \text{ can be written as } \sum_{z\in \text{dom } f_t} \mu_t(z) \cdot z = x \text{ if we denote } x_i = \mu_i(1) \text{ for } i \in A_t.$ Therefore, problem (19) can be equivalently rewritten as follows:

$$\min_{x \in \mathbb{R}^d} \sum_{t \in T} \hat{f}(x_{A_t}) \tag{21}$$

It can be seen that the last problem is equivalent to (3). Indeed, we just need to observe that for each $t\in T$ and $x\in\mathbb{R}^{A_t}$ we have

$$\min_{\substack{y \in \operatorname{conv}(\mathcal{Y}_t) \\ y_* = x}} y_\circ = \min_{\substack{\alpha \geq \mathbf{0}, \; \sum_{z \in \operatorname{dom} f_t} \alpha(z) = 1 \\ y = \sum_{z \in \operatorname{dom} f_t} \alpha(z) \cdot [z \; f(z)] \\ y_* = x}} y_\circ$$

$$= \min_{\substack{\alpha \geq \mathbf{0}, \; \sum_{z \in \text{dom } f_t} \alpha(z) = 1 \\ \sum_{z \in \text{dom } f_t} \alpha(z) \cdot z = x}} \sum_{z \in \text{dom } f_t} \alpha(z) f(z) = \hat{f}_t(x)$$

Proof of Proposition 1. Write $f(y) := \sum_{t \in T} y_{\circ}^t$, then problem (3) can be written as

The Lagrangian w.r.t. the equality constraints is given by

$$L(y, x, \lambda) = f(y) + \sum_{t \in T} \langle y_{\star}^{t} - x_{A_{t}}, \lambda^{t} \rangle$$
$$= \sum_{t \in T} \langle y^{t}, [\lambda^{t} \ 1] \rangle - \sum_{t \in T} \langle x_{A_{t}}, \lambda^{t} \rangle$$

Therefore, the dual function for $\lambda \in \bigotimes_{t \in T} \mathbb{R}^{A_t}$ is

$$\begin{array}{ll} h(\lambda) & = & \displaystyle \min_{(y,x) \in \mathbb{Y} \times \mathbb{R}^d} L(y,x,\lambda) \\ & = & \begin{cases} \displaystyle \sum_{t \in T} \min_{y^t \in \mathbb{Y}_t} \langle y^t, [\lambda^t \ 1] \rangle & \text{if } \lambda \in \Lambda \\ -\infty & \text{otherwise} \end{cases} \end{array}$$

The problem can thus be formulated as $\max_{\lambda} h(\lambda)$, or equivalently as $\max_{\lambda \in \Lambda} h(\lambda)$. This coincides with formulation given in Proposition 1.

Since constraint $y \in \mathbb{Y}$ can be expressed as a linear program, the duality between (3) and (5) can be viewed as a special case of linear programming (LP) duality (where the value of function $h(\lambda)$ is also written as a resulting of some LP). For LPs it is known that strong duality holds assuming that either the primal or the dual problems have a feasible solution. This holds in our case, since vector $\lambda = \mathbf{0} \in \Lambda$ is feasible. We can conclude that we have a strong duality between (3) and (5).

Proof of Proposition 2. First, we derive the dual of $h_{\mu,c}$:

$$= \max_{\lambda \in A} h_{\mu,c}(\lambda)$$

$$= \max_{\lambda \in A} \sum_{t \in T} \min_{y^t \in \mathbb{Y}_t} \langle y^t, [\lambda^t \ 1] \rangle - \frac{1}{2c} \|\lambda^t - \mu^t\|^2$$

$$= \min_{y \in \mathbb{Y}} \max_{\lambda \in A} \sum_{t \in T} \langle y^t, [\lambda^t \ 1] \rangle - \frac{1}{2c} \|\lambda^t - \mu^t\|^2$$

$$= \underbrace{\prod_{y \in \mathbb{Y}} \max_{\lambda \in A} \sum_{t \in T} \langle y^t, [\lambda^t \ 1] \rangle - \frac{1}{2c} \|\lambda^t - \mu^t\|^2}_{=:f_{\mu,c}(y)}$$

The function $f_{\mu,c}(y)$ has a closed form expression, since it is a quadratic function subject to linear equalities. Write $\nu_i = \frac{1}{|T_i|} \sum_{t \in T_i} (c \cdot y_i^t + \mu_i^t)$ for $i \in [d]$. The $\arg\max$ in the expression defining $f_{\mu,c}(y)$ are

$$\lambda^t = (c \cdot y_\star^t + \mu^t) - \nu_{A_t} \tag{23}$$

The function value is

$$\begin{split} f_{\mu,c}(x) &= \sum_{t \in T} \langle y^t, [\lambda_\star^t \ 1] \rangle - \frac{1}{2c} \|\lambda_\star^t - \mu^t\|^2 \\ &= \sum_{t \in T} \left(\begin{array}{c} \langle y_\star^t, c \cdot y_\star^t + \mu^t - \nu_{A_t} \rangle + y_\circ^t \\ -\frac{1}{2c} \|cx_\star^t + \mu^t - \nu_{A_t} - \mu^t\|^2 \end{array} \right) \\ &= \sum_{t \in T} \left(\begin{array}{c} c \|y_\star^t\|^2 + \langle y_\star^t, \mu^t - \nu_{A_t} \rangle + y_\circ^t \\ -\frac{1}{2c} \|cy_\star^t - \nu_{A_t} \|^2 \end{array} \right) \\ &= \sum_{t \in T} \left(\begin{array}{c} c \|y_\star^t\|^2 + \langle y_\star^t, \mu^t - \nu_{A_t} \rangle + y_\circ^t \\ -\frac{1}{2c} \left\{ \|cy_\star^t\|^2 - 2c\langle y_\star^t, \nu_{A_t} \rangle + \|\nu_{A_t} \|^2 \right\} \end{array} \right) \\ &= \sum_{t \in T} \left(\begin{array}{c} c \|y_\star^t\|^2 + \langle y_\star^t, \mu^t \rangle + y_\circ^t - \frac{1}{2c} \|\nu_{A_t} \|^2 \right) . \end{split} \right) \end{split}$$

The gradient is $\nabla_t f_{\mu,c}(y) = [c \cdot y^t + \mu^t - \nu_{A_t} \ 1] = [\lambda^t \ 1].$

Proof of Proposition 3. Let $\overline{\mathbb{Y} \times \mathbb{R}^d}$ be the set of vectors $(y,x) \in \mathbb{Y} \times \mathbb{R}^d$ satisfying the equality constraints $y_\star^t = x_{A_t}$ for all t. By construction, for any $\lambda \in \Lambda$ we have

$$f(y) = L(y, x, \lambda) \quad \forall (y, x) \in \overline{\mathbb{Y} \times \mathbb{R}^d}$$
 (24a)

$$L(y, x, \lambda) \ge h(\lambda)$$
 $\forall (y, x) \in \mathbb{Y} \times \mathbb{R}^d$ (24b)

$$L(y, x, \lambda) = \sum_{t \in T} \langle y^t, [\lambda^t \ 1] \rangle$$
 (24c)

Eq. (24c) gives that $A_{y,\lambda} = L(y,x,\lambda) - h(y)$ for any $(y,\lambda) \in \mathbb{Y} \times \Lambda$ and $x \in \mathbb{R}^d$, and so from (24b) we get that $A_{y,\lambda} \geq 0$. Clearly, we have $B_y \geq 0$. The following two facts imply part (b) of Proposition 3:

- Consider vector $y \in \mathbb{Y}$. Then $B_y = 0$ if and only if $(y, x) \in \overline{\mathbb{Y} \times \mathbb{R}^d}$ for some x. (This can be seen from the definition of B_y in Section 2.3).
- Consider vectors $(y,x) \in \mathbb{Y} \times \mathbb{R}^d$ and $\lambda \in \Lambda$. They are an optimal primal-dual pair if and only if $f(y) = h(\lambda)$, which in turn holds if and only if $A_{y,\lambda} = 0$ (since $A_{y,\lambda} = L(y,x,\lambda) h(\lambda) = f(y) h(\lambda)$).

It remains to show inequality (11). Denote $\delta = \lambda^* - \lambda$, then $\sum\limits_{t \in T_i} \delta_i^t = 0$ for any $i \in [d]$. Denoting $y_i^- = \min\limits_{t \in T_i} y_i^t$ and $y_i^+ = \max\limits_{t \in T_i} y_i^t$, we get

$$\begin{split} \sum_{t \in T_t} y_i^t \cdot \delta_i^t &=& \sum_{t \in T_t} \left[y_i^t - y_i^- \right] \cdot \delta_i^t \\ &\leq & \sum_{t \in T_t} \left[y_i^+ - y_i^- \right] \cdot |\delta_i^t| \\ &\leq & \left[y_i^+ - y_i^- \right] \cdot ||\delta||_{1,\infty} \end{split}$$

Summing these inequalities over $i \in [d]$ gives

$$\sum_{t \in T} \langle y_{\star}^t, \delta^t \rangle \le B_y \cdot \|\delta\|_{1, \infty}$$

Recalling that $A_{\lambda^*,y} \geq 0$, we obtain the desired claim:

$$\begin{split} h(\lambda^*) & \leq & \sum_{t \in T} \langle y^t, [(\lambda^*)^t \ 1] \rangle \\ & = & \sum_{t \in T} \langle y^t, [\lambda^t \ 1] \rangle + \sum_{t \in T} \langle y^t_\star, \delta^t \rangle \\ & \leq & \sum_{t \in T} \langle y^t, [\lambda^t \ 1] \rangle + B_y \cdot \|\delta\|_{1,\infty} \end{split}$$

Lemma 1 (step size in Algorithm 1). The optimal step size γ in Algorithm 1 is

$$\gamma = \frac{\langle \nabla_t f_{\mu,c}(y), y^t - z^t \rangle}{c \|y_{\star}^t - z_{\star}^t\|^2} = \frac{\langle [c \cdot y_{\star}^t + \mu^t - \nu_{A_t} \ 1], y^t - z^t \rangle}{c \|y_{\star}^t - z_{\star}^t\|^2} \tag{25}$$

and clip γ to [0,1].

Proof. Recall that $y(\gamma)$ in algorithm 1 is defined as $y(\gamma)^s = \begin{cases} y^s, & s \neq t \\ (1-\gamma)y^t + \gamma z^t, & s = t \end{cases}$. The derivative $f_{\mu,c}(y(\gamma))' = \langle \nabla f_{\mu,c}(y(\gamma)), y(\gamma)' \rangle$ is hence zero except in the t-th place. Thus,

$$f_{\mu,c}(x(\gamma))' = \langle \nabla_t f_{\mu,c}(y), -y^t + z^t \rangle$$

$$= \langle [c \cdot y_{\star}^t(\gamma) + \mu^t - \nu_{A_t} 1], -y^t + z^t \rangle$$

$$= \langle [c \cdot y_{\star}^t + \mu^t - \nu_{A_t} 1], -y^t + z^t \rangle$$

$$+ \gamma \langle c \cdot (-y_{\star}^t + z_{\star}^t), -y_{\star}^t + z_{\star}^t \rangle$$
(26)

Setting the above derivative zero yields

$$\gamma = \frac{\langle [c \cdot y_{\star}^t + \mu^t - \nu_{A_t} \ 1], y^t - z^t \rangle}{c \|y_{\star}^t - z_{\star}^t\|^2} \ .$$

Recalling that we require $\gamma \in [0,1]$, we get the desired formula.

B. Detailed experimental evaluation

In Table 2 we give the final lower bound obtained by each tested algorithm for every instance of every dataset we evaluated on. The averaged numbers are given in Table 1.

Table 2: Lower bound of each instance. † means method not applicable. **Bold** numbers indicate highest lower bound among competing methods.

Instance	FWMAP	СВ	SA	MP			
		MRF					
protein folding							
1CKK	-12840.23	-12857.29	-12945.39	-12924.97			
1CM1	-12486.15	-12499.21	-12591.23	-12488.10			
1SY9	-9193.38	-9196.14	-9293.58	-9194.77			
2BBN	-12396.51	-12461.89	-12585.85	-12417.20			
2BCX	-14043.57	-14144.89	-14231.86	-14112.73			
2BE6	-13311.78	-13381.35	-13410.24	-13438.23			
2F3Y	-14572.71	-14619.70	-14672.71	-14641.60			
2FOT	-12049.52	-12112.31	-12154.66	-12103.75			
2HQW	-13514.79	-13573.99	-13610.14	-13539.69			
2060	-13557.32	-13664.00	-13718.71	-13565.42			
3BXL	-14125.86	-14165.97	-14266.01	-14136.79			
Discrete tomography							
2 projections							
0.10_0.10_2	97.99	97.94	96.46	†			
0.20_0.20_2	226.81	226.66	222.05	†			
0.30_0.30_2	205.65	205.25	194.49	†			
0.40_0.40_2	271.23	270.99	253.94	†			
0.50_0.48_87	340.13	339.98	315.41	†			
0.60_0.58_28	313.19	312.80	288.73	†			
0.70_0.67_47	287.11	286.83	246.04	†			
0.80_0.76_72	338.97	338.78	290.73	†			
0.90_0.85_63	313.98	313.77	246.63	†			
4 projections							
0.10_0.10_2	102.00	101.55	99.50	†			
0.20_0.20_2	250.61	250.02	245.30	†			
0.30_0.30_2	247.86	246.44	233.65	†			
0.40_0.40_2	365.05	364.00	346.89	†			
0.50_0.48_87	439.60	435.50	412.32	†			
0.60_0.58_28	400.91	400.05	368.05	†			
0.70_0.67_47	393.88	392.57	371.80	†			
0.80_0.76_72	443.87	440.91	413.42	†			
0.90_0.85_63	397.14	395.93	358.60	†			
	6 <u>j</u>	projections					
0.10_0.10_2	102.00	102.00	101.82	†			
0.20_0.20_2	256.00	255.85	254.74	†			
0.30_0.30_2	295.85	292.28	272.74	†			
0.40_0.40_2	461.27	456.70	433.89	†			
0.50_0.48_87	533.95	526.86	494.29	†			
0.60_0.58_28	514.05	507.34	474.61	†			
0.70_0.67_47	577.38	566.15	530.47	†			
0.80_0.76_72	542.96	534.01	488.62	†			
0.90_0.85_63	535.78	518.67	468.60	†			
sheep logan 64x64							
Logan_64_2	582.52	541.62	392.47	†			
Logan_64_4	871.58	831.63	702.32	†			

Table 2: Lower bound of each instance. † means method not applicable. **Bold** numbers indicate highest lower bound among competing methods.

-							
Instance	FWMAP	СВ	SA	MP			
Logan_64_6	1237.44	1170.36	1011.00	†			
sheep logan 256x256							
Logan_256_2	3709.46	3505.46	2599.41	†			
Logan_256_4	4888.25	4739.40	976.29	†			
Logan_256_6	5142.48	4832.85	-2463.81	†			
Graph matching							
6d scene flow							
board	-2262.66	-2262.66	-2262.89	-2262.66			
books	-4179.79	-4186.16	-4191.30	-4204.14			
hammer	-2125.87	-2127.66	-2130.58	-2146.81			
party	-3648.03	-3648.71	-3649.41	-3657.12			
table	-3340.59	-3341.12	-3343.81	-3363.98			
walking	-1627.30	-1627.34	-1627.58	-1627.79			