A. Proofs

The BLP relaxation [[L7] introduces a probability distri-
bution u; over {0,1} for each ¢ € [d] and a probability
distribution p; over dom f; for each ¢ € T'. It can be written
as follows:

min > Y. m(2)fi(2)

k#20  {eT zedom ft
st pi(0) +pi(1) =1
> m(z) =1

z€dom f

>, wu(2)i = pila)
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Let us show that the optimal values of (T9) and (3] coincide.

Proof of equivalence of (I9) and (3). Define an extension
fi + RY — R U {+oo} of function f : {0,1}4 —
R U {+0o0} as follows: for a vector z € R4t set

> m(2)fi(2)

fi(z) = min

w20 Ledom ft
S.t. Z p,t(Z) =1 (20)
z€dom fy
S (e) s =
z€dom f

Note, if ¢ [0,1]"¢ then 20) does not have a feasible
solution, and so f;() = 4-00. Observe that the constraints
in the last line of (T9) for a = 0 are redundant - they follow
from the remaining constraints. Also observe that constraints
> zedom fy:zi=1 Ht(2)i = pi(1) fori € A; can be written as
edom f, Mt(2) -z = w if we denote z; = yu;(1) fori € Ay.
Therefore, problem (T9) can be equ1valent1y rewritten as
follows:
ey

It can be seen that the last problem is equivalent to (3).
Indeed, we just need to observe that for each t € T and
x € R4 we have

min =y, = min o
y€Econv(Y) a>0, > cdom e a(z)=1
y-=3 U= camm 11 6(5) [ £(2)]
Yx=T
= min > zedom £, A(2)f(2) = fil)

a>0, 3" ciom 1t a(z)=1
> cdom fe a(z)-z=z

O

Proof of Proposition[l] Write f(y) :=
lem (B)) can be written as

> et Y&, then prob-

min f()
(y@)EYXRd
yl=x4, VIET

(22)

The Lagrangian w.r.t. the equality constraints is given by

L(yaxv)‘) = +Z _xAtv)‘t
teT
= Z<yta P‘t 1]> - Z<xAt’ )‘t>
teT teT

Therefore, the dual function for A € @, R4 is

h(\) = i L A
(A) i (y,2, )
> min (¥, M 1]) ifAe A
= teT v EY:
—00 otherwise

The problem can thus be formulated as maxy h(\), or equiv-
alently as maxyc 4 h(A). This coincides with formulation
given in Proposition|[T}

Since constraint y € Y can be expressed as a linear
program, the duality between (3)) and (3) can be viewed as a
special case of linear programming (LP) duality (where the
value of function h(\) is also written as a resulting of some
LP). For LPs it is known that strong duality holds assuming
that either the primal or the dual problems have a feasible
solution. This holds in our case, since vector A = 0 € A
is feasible. We can conclude that we have a strong duality
between (3)) and (3). O

Proof of Proposition 2] First, we derive the dual of A, .:

max hy c(A)

= max Y, min (y, [\ 1]) —

A t iHAt o
eA teT Y €Yy

pt]?

= minmax » (y'

1
ST = =N =
yeY AeA = 2c

=tfu,c(y)

The function f, .(y) has a closed form expression, since it
is a quadratic function subject to linear equalities. Write
v = ﬁ > oter, (¢ yf + ) for i € [d]. The arg max in the
expression defining f,, .(y) are

A= (e g+ ') —va, (23)
The function value is
fucl@) = V) = I )P
< y*,C y*+:u 71/Af>+y02 )
e \ —gglleat +u |
< C||y*||2 y*vﬂ _I/At>+y€ )
||Cy* - VAt”
= Z < cHy*||22 <y*7:u VAt>+yé ) >
teT {Hcy*” 2C<yi7 VA{> + ||VAt|| }
=X %IIy*II2 + (Yl ") + Yk = gellva, ) -
teT



The gradient is V. f,, . (y) =
O

Proof of Proposition[3] Let Y x R? be the set of vectors
(y,7) € Y x R? satisfying the equality constraints y! = x4,
for all t. By construction, for any A € A we have

fly) = L(y,z,\) VY(y,z) €Y x R (24a)

L(y,z,\) > h()\) Y(y,z) € Y x RY  (24b)
Ly, z,A) = > (', [\ 1)) (24c)
teT

Eq. gives that A, x = L(y,z,\) — h(y) for any
(y,A) € Y x Aand 2 € RY, and so from 24b) we get
that A, » > 0. Clearly, we have B, > 0. The following two
facts imply part (b) of Proposition [3}

o Consider vector y € Y. Then B, = 0 if and only if

(y,2) € Y x R9 for some z. (This can be seen from
the definition of B, in Section[2.3).

e Consider vectors (y,z) € Y x R?and A € A. They are
an optimal primal-dual pair if and only if f(y) = h()),
which in turn holds if and only if A, = 0 (since
Ayx = Ly, 2, A) = h(A) = f(y) = h(A)).

It remains to show inequality (TT). Denote § = \* — X, then
> 6¢ = 0forany i € [d]. Denoting y; = miny! and
teT; teT;

+ t

= max y!, we get
Yi ItIéT)f Yi g

Dovi-or = D [vi-v]-6

teT teTy
< Dl -w]

teTy
< [y —wi ] ol

Summing these inequalities over i € [d] gives

D (6 < By 116100

teT

Recalling that Ay« , > 0, we obtain the desired claim:

R < D I )
= Z y ) >‘t +Z y*a(;t
teT teT
< D LI )+ By [16]he
teT

fory! + it —va, 1] = X 1.

Lemma 1 (step size in Algorithm[I). The optimal step size
7y in Algorithm/[I]is

(e -yl +pt —wa, 1],y" — 2°)

 (Vefuely) ' — ) _

cllyf — 2|12 cllyf — 2|12

(25)
and clip v to [0,1].

Proof. Recall that y(y) in algorithm [I| is defined as
s s#t o
y(v)® = { (1= )yt 472t s—t The derivative
SueW)" = (Vfue(y(7)),y(7)’) is hence zero except

in the ¢-th place. Thus,
fue(z(7))
= <thu,c(y)7 _yt + Zt)

= (le-yi(y) +pt —va, 1], —y" + 2% (26)
eyt + pt —va, 1], =yt + 2%)
T (e (—yk 42, -yl 4+ 2D

Setting the above derivative zero yields

([e-yl +pt —va, 1], y" — 2%)
cllyt — 2L

’Y:

Recalling that we require v € [0, 1], we get the desired
formula. O

B. Detailed experimental evaluation

In Table 2] we give the final lower bound obtained by
each tested algorithm for every instance of every dataset we
evaluated on. The averaged numbers are given in Table [T}



Table 2: Lower bound of each instance. t means method not applicable.
Bold numbers indicate highest lower bound among competing methods.

Instance FWMAP CB SA MP
MRF
protein folding
1CKK -12840.23  -12857.29 -12945.39 -12924.97
1CM1 -12486.15  -12499.21 -12591.23 -12488.10
1SY9 -9193.38 -9196.14  -9293.58  -9194.77
2BBN -12396.51  -12461.89 -12585.85 -12417.20
2BCX -14043.57 -14144.89 -14231.86 -14112.73
2BE6 -13311.78  -13381.35 -13410.24 -13438.23
2F3Y -14572.71  -14619.70 -14672.71 -14641.60
2FOT -12049.52  -12112.31 -12154.66 -12103.75
2HQW -13514.79  -13573.99 -13610.14 -13539.69
2060 -13557.32  -13664.00 -13718.71 -13565.42
3BXL -14125.86  -14165.97 -14266.01 -14136.79
Discrete tomography

2 projections
0.10_0.10_2 97.99 97.94 96.46 T
0.20_0.20_2 226.81 226.66 222.05 T
0.30_0.30_2 205.65 205.25 194.49 T
0.40_0.40_2 271.23 270.99 253.94 T
0.50_0.48_87 340.13 339.98 31541 T
0.60_0.58_28 313.19 312.80 288.73 T
0.70_0.67_47 287.11 286.83 246.04 1
0.80_0.76_72 338.97 338.78 290.73 T
0.90_0.85_63 313.98 313.77 246.63 1

4 projections
0.10_0.10_2 102.00 101.55 99.50 1
0.20_0.20_2 250.61 250.02 245.30 T
0.30_0.30_2 247.86 246.44 233.65 i
0.40_0.40_2 365.05 364.00 346.89 T
0.50_0.48_87 439.60 435.50 412.32 T
0.60_0.58_28 400.91 400.05 368.05 T
0.70_0.67_47 393.88 392.57 371.80 T
0.80_0.76_72 443.87 440.91 413.42 T
0.90_0.85_63 397.14 395.93 358.60 T

6 projections
0.10_0.10_2 102.00 102.00 101.82 T
0.20_0.20_2 256.00 255.85 254.74 T
0.30_0.30_2 295.85 292.28 272.74 T
0.40_0.40_2 461.27 456.70 433.89 T
0.50_0.48_87 533.95 526.86 494.29 T
0.60_0.58_28 514.05 507.34 474.61 1
0.70_0.67_47 577.38 566.15 530.47 T
0.80_0.76_72 542.96 534.01 488.62 1
0.90_0.85_63 535.78 518.67 468.60 T

sheep logan 64x64

Logan_64_2 582.52 541.62 392.47 T
Logan_64_4 871.58 831.63 702.32 i




Table 2: Lower bound of each instance. t means method not applicable.
Bold numbers indicate highest lower bound among competing methods.

Instance FWMAP CB SA MP
Logan_64_6 1237.44 1170.36 1011.00 T
sheep logan 256x256
Logan_256_2 3709.46 3505.46 2599.41 T
Logan_256_4 4888.25 4739.40 976.29 T
Logan_256_6 5142.48 4832.85 -2463.81 T
Graph matching
6d scene flow

board -2262.66 -2262.66  -2262.89  -2262.66
books -4179.79 -4186.16  -4191.30  -4204.14
hammer -2125.87 -2127.66  -2130.58  -2146.81
party -3648.03 -3648.71 -3649.41 -3657.12
table -3340.59 -3341.12  -3343.81 -3363.98
walking -1627.30 -1627.34  -1627.58  -1627.79




