Supplementary for DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Multi-scale Deep Features

Chang Tang1, Xinzhong Zhu2, Xinwang Liu3, Lizhe Wang1, Albert Zomaya4

1School of Computer Science, China University of Geosciences, Wuhan, China
2College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, China
3School of Computer Science, National University of Defense Technology, Changsha, China
4School of Information Technologies, University of Sydney, NSW, Australia

\{tangchang@cug.edu.cn,zxz@zjnu.edu.cn,xinwangliu@nudt.edu.cn,Lizhe.Wang@gmail.com,albert.zomaya@sydney.edu.au\}

1. Ablation Analysis Using Precision-recall Curves
 Ablation analysis using precision-recall curves is shown in Figure 1.

2. More Visual Comparison Results
 More visual comparison results can be found in Figure 2.

3. Results at Different Time Steps

4. F-measure and MAE Scores of on Two Datasets with Different m

![Precision-recall curves for Shi et al.’s dataset](image1)

![Precision-recall curves for DUT](image2)

Figure 1. Ablation analysis using precision-recall curves.
Figure 2. Visual comparison of detected defocus blur maps generated from different methods. The results demonstrate that our method consistently outperforms other approaches, and produces defocus blur maps more close to the ground truth.

Figure 3. Results at different time steps.
<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-Measure</td>
<td>MAE</td>
<td>F-Measure</td>
<td>MAE</td>
<td>F-Measure</td>
<td>MAE</td>
</tr>
<tr>
<td>Shi et al.’s dataset</td>
<td>0.894</td>
<td>0.122</td>
<td>0.898</td>
<td>0.175</td>
<td>0.911</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Table 1. F-measure and MAE scores of on two datasets with different m