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This supplementary document provides additional re-
sults supporting the claims of the main paper. First, we
provide detailed experimental results about the influence
of the number of attention channels (Sec. 1). Addition-
ally, we compare our two-stage model with one-stage model
(Sec. 2). We also provide the visualization results of the
generated uncertainty maps (Sec. 3) and the arbitrary cross-
view image translation experiments on Ego2Top dataset [ 1]
(Sec. 4). Finally, we compare our SelectionGAN with the
state-of-the-arts methods, i.e. Pix2pix [2], X-Fork [3] and
X-Seq [3]. Specifically, we compare the results of the gen-
erated segmentation maps (Sec. 5), and visualize the com-
parison results on Dayton [4], CVUSA [5] and Ego2Top [1]
datasets (Sec. 6).

1. Influence of the Number of Attention Chan-
nels N

We investigate the influence of the number of attention
channels N in Equation 3 in the main paper. Results are
shown in Table 1. We observe that the performance tends
to be stable after N = 10. Thus, taking both performance
and training speed into consideration, we have set N = 10
in all our experiments.

Table 1: Influence of the number of attention channels N.

n | SSIM | PSNR | SD

0 | 05438 [ 22.9773 | 19.4568
1 | 05522 | 23.0317 | 19.5127
5 | 0.5901 | 23.8068 | 20.0033
10 | 0.5986 | 23.7336 | 19.9993
32 | 05950 | 23.8265 | 19.9086

“Equal contribution.
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Table 2: Results of coarse-to-fine generation. The best re-
sults are marked in blue color.

Baseline | Stagel | StageIl | SSIM PSNR SD
F Vv 0.5551 | 23.1919 | 19.6311
F vV 0.5989 | 23.7562 | 20.0000
G vV 0.5680 | 23.2574 | 19.7371
G v 0.6047 | 23.7956 | 20.0830
H Vv 0.5567 | 23.1545 | 19.6034
H V4 0.6167 | 23.9310 | 20.1214

2. Coarse-to-Find Generation

We provide more comparison results of coarse-to-fine
generation in Table 2 and Figures 1, 2 and 3. We observe
that our two-stage method generate much visually better re-
sults than the one-stage model, which further confirms our
motivations.

3. Visualization of Uncertainty Map

In Figures 1, 2, 3 and 4, we show some samples of the
generated uncertainty maps. We can see that the generated
uncertainty maps learn the layout and structure of the target
images.

4. Arbitrary Cross-View Image Translation

We also conducted the arbitrary cross-view image trans-
lation experiments on Ego2Top dataset. As we can see from
Figure 4, given an image and some novel semantic maps,
SelectionGAN is able to generate the same scene but with
different viewpoints in both outdoor and indoor environ-
ments.

5. Generated Segmentation Maps

Since the proposed SelectionGAN can generate segmen-
tation maps, we also compare it with X-Fork [3] and X-
Seq [3] on Dayton dataset. Following [3], we compute



Table 3: Per-class accuracy and mean IOU for the gener-
ated segmentation maps on Dayton dataset. For both metric,
higher is better. (*) These results are reported in [3].

Method aZg
Per-Class Acc. mIOU
X-Fork [3] 0.6262* 0.4163*
X-Seq [3] 0.4783% 0.3187*
SelectionGAN (Ours) 0.6415 0.5455

per-class accuracies and mean IOU for the most common
classes in this dataset: “vegetation”, “road”, “building” and
“sky” in ground segmentation maps. Results are shown
in Table 3. We can see that the proposed SelectionGAN
achieves better results than X-Fork [3] and X-Seq [3] on

both metrics.

6. State-of-the-art Comparisons

In Figures 5, 6, 7, 8 and 9, we show more image gen-
eration results on Dayton, CVUSA and Ego2Top datasets
compared with the state-of-the-art methods i.e., Pix2pix [2],
X-Fork [3] and X-Seq [3]. For Figures 5, 6, 7, 8, we repro-
duced the results of Pix2pix [2], X-Fork [3] and X-Seq [3]
using the pre-trained models provided by the authors'. As
we can see from all these figures, the proposed Selection-
GAN achieves significantly visually better results than the
competing methods.
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Figure 1: Results generated by our SelectionGAN in 256 x 256 resolution in a2g direction on Dayton dataset. These samples
were randomly selected for visualization purposes.



SelectionGAN SelectionGAN

Image ID Input Semantic Map Ground Truth Uncertainty Map (Coarse) (Refined)

2ikSxbJ_IPDpgx
Hyw3wsHQ.x15
3.y472.a-56.g2a

Z98Z4LNHbFXz
RID_Y3wdfg.x47
.y519.a-75.g2a

MUOQeiEudT-
pldpzxmkiaQ.x1
012.y333.a-127.

g2a

vsL_SDSUR-
120ZmK7z6eiw.x
164.y401.a-54.g
2a

W8BJder1A-y9-

M2NOTZMIA.X62

8.y419.a-143.g2
a

yigTMgt3UCGP4
Frcdb1srQ.x867.
y490.a102.g2a

Z9LW3Cv-
k8Val_wpLBQx4
w.x1002.y441.a-

53.g2a

MxSXk6HyVEH _

FeEJHUTcSg.x4

87.y471.a104.g2
a

Figure 2: Results generated by our SelectionGAN in 256 x 256 resolution in g2a direction on Dayton dataset. These samples
were randomly selected for visualization purposes.
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Figure 3: Results generated by our SelectionGAN in 256 x 256 resolution in a2g direction on CVUSA dataset. These samples
were randomly selected for visualization purposes.
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Figure 4: Arbitrary cross-view image translation on Ego2Top dataset.
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Figure 5: Results generated by dlfferent methods in 64 x64 resolution in both a2g (Top) and g2a (Bottom) directions on
Dayton dataset. These samples were randomly selected for visualization purposes.
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Figure 6: Results genrated by different methods in 256 x 256 resolution in a2g direction on Dayton dataset. These samples
were randomly selected for visualization purposes.
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Figure 8: Results generated by different methods in 256 x 256 resolutlon in a2g d1rect10n on CVUSA dataset. These samples
were randomly selected for visualization purposes.
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Figure 9: Results generated by different methods in 256 x 256 resolution on Ego2Top dataset. Theée sam
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