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We present some proofs that were not included in the
main part of the paper and some additional results of our
algorithm on synthetic data.

1. Analytical cameras and duality
The analytical expression for Pc(x) given in Proposi-

tion 2.4 follows easily from the following general result.

Proposition 1.1. The unique projective transformation of
Pn that maps n+2 general points x1, . . . ,xn+2 to the stan-
dard basis of Pn can be described by

y 7→



|x2...xn+1y|
|x2...xn+1xn+2|

|x1x3...xn+1y|
|x1x3...xn+1xn+2|

...

|x1...xny|
|x1...xnxn+2|


. (1)

Proof. It is clear that (1) describes a projective transforma-
tion, since all the expressions are linear in the coordinates
of y. It also follows from elementary properties of determi-
nants that (1) maps x1, . . . ,xn+2 to the standard basis.

We now turn to Cremona transformations and justify the
general formula (5) given in the paper.

Proposition 1.2. The rational map of P3 given by

ŷ = Z


1

|yx2x3x4|
1

|z1yz3z4|
1

|z1z2yz4|
1

|z1z2z3y|

 , (2)

where Z has columns z1, . . . ,z4, is a Cremona transfor-
mation relative to z1, z2, z3, z4 (in the sense of Lemma 2.2
from the main part of the paper).

Proof. We need to show that z1, . . . ,z4,y1,y2 are in the
same projective configuration as z1, . . . ,z4, ŷ2, ŷ1. In-
deed, a projective transformation relating the two sets of

points is given by

x 7→ Z



|xz2z3z4|
|y1z2z3z4||y2z2z3x4|

|z1xz3z4|
|z1y1z3z4||z1y2z3x4|

|z1z2xz4|
|z1z2y1z4||z1z2y2x4|

|z1z2z3x|
|z1z2z3y1||z1z2z3y2|


, (3)

where y1,y2 are considered fixed. Note that when
z1, . . . ,z4 are basis points then (2) yields the standard Cre-
mona transformation

ŷ =

(
1

y1
,
1

y2
,
1

y3
,
1

y4

)T

, (4)

and (3) becomes

x 7→
(

x1
y11y21

,
x2

y12y22
,

x3
y13y23

,
x4

y14y24

)T

, (5)

where x = (x1, x2, x3, x4)
T , y1 = (y11, y12, y13, y14)

T

and y2 = (y21, y22, y23, y24)
T .

We next prove Proposition 3.1 from the main part of the
paper. We recall that the set S in P3 × P3 × P2 was defined
as the set of triples (c,x,u) such that Pc(x) = u where
Pc is a reduced camera.

Proposition 3.1. (1) For fixed c and u, the set of points
x such that (c,x,u) belongs to S is a line with Plücker
coordinates

ξ = Qcu where Qc =


c1c4 0 0
0 c2c4 0
0 0 c3c4
0 −c2c3 c2c3
c1c3 0 −c1c3
−c1c2 c1c2 0

 . (6)

(2) For fixed x and u, the set of points c such that (c,x,u)
belongs to S is a twisted cubic passing through z1, . . . ,z4
and x.
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Proof. To show (1), we define ξj = c ∨ zj (j = 1, . . . , 4).
With our choice of coordinate system, we have

ξ1 =


c4
0
0
0
c3
−c2

 , ξ2 =


0
c4
0
−c3
0
c1

 , ξ3 =


0
0
c4
c2
−c1
0

 , ξ4 = −


c1
c2
c3
0
0
0

 .
(7)

We write ξ = ρ1u1ξ1+ρ2u2ξ2+ρ3u3ξ3, where the scalars
ρ1, ρ2, ρ3 have been chosen so that ξ4 = ρ1ξ1 + ρ2ξ2 +
ρ3ξ3. A simple calculation shows that ρ1 = −c1/c4, ρ2 =
−c2/c4, ρ3 = −c3/c4, and (6) immediately follows.

For the second statement, we first note that the set S is
characterized algebraically by the relation

rk

c1x4 − c4x1 u1c1
c2x4 − c4x2 u2c2
c3x4 − c4x3 u3c3

 = 1. (8)

This expression follows fromu1u2
u3

 ∼ Pc(x) =
x1/c1 − x4/c4x2/c2 − x4/c4
x3/c3 − x4/c4

 , (9)

after we clear denominators and eliminate a factor of c4.
We now observe that for fixed x and u, the three quadratic
equations in c from the minors of (8) define a twisted cu-
bic curve. Indeed, as shown for example in [1, p.14], if
L1, L2, L3, M1,M2,M3 are linear forms in c1, c2, c3, c4,
then the projective set defined by

rk

[
L1 L2 L3

M1 M2 M3

]
= 1, (10)

is a twisted cubic if and only if for any (λ, µ) the three linear
forms λLi + µMi (i = 1, 2, 3) are independent. It follows
that (8) is a twisted cubic in x if and only if−λx4 + µu1 0 0 λx1

0 −λx4 + µu2 0 λx2
0 0 −λx4 + µu3 λx3

 (11)

has rank three for all λ, µ. This is true if the coordinates
u1, u2, u3 are all distinct and not zero, and the coordinates
x1, x2, x3 are not zero, which is indeed the case under our
genericity assumptions.

1.1. Reduced 2D trifocal tensors and trilinearities

We begin by presenting some properties of the SFM
problem for projections from P2 to P1. We represent an
analytical projection of this type using a 2 × 3 real matrix
P defined up to scale. As for traditional cameras, the cen-
ter of this projection is the point of P2 associated with the
null-space ofP . Note that ifP ,P ′ are two projections with

distinct centers, then every pair of points (t, t′) in P1 × P1

will be a “correspondence” forP ,P ′, i.e., there will always
exist a point x in P2 such that Px ∼ t and P ′x ∼ t′. This
follows from the fact that two lines in P2 always intersect.
Thus, the first interesting case of multi-view geometry is
for n = 3.

Proposition 1.3. Given three projections P ,P ′,P ′′ with
disjoint centers, there exists a 2× 2× 2 “trifocal tensor” T
such that (t, t′, t′′) in P1×P1×P1 correspond if an only if

T ijktit
′
jt
′′
k = 0, (12)

where we use Einstein notation for summation. Entries for
T are given by

T ijk = (−1)ijk|P3−iP
′
3−jP

′′
3−k|, i, j, k ∈ {1, 2}, (13)

where |PiP
′
jP
′′
k | denotes the determinant of the 3 × 3 ma-

trix obtained by stacking the i-th row of P , the j-th row of
P ′, and the k-th row of P ′′. Finally, the trifocal tensor T
satisfies the following properties:

1. Any general 2×2×2 tensor is a “valid” trifocal tensor.

2. Given a general trifocal tensor T , there are two (pos-
sibly complex) projectively distinct sets of parameters
for P ,P ′,P ′′.

Proof. These facts are shown in [2], but we give a short
proof here for completeness. We first note that for any 2×3
projection matrix P there is an associated 3 × 2 “inverse
projection” matrix Q that maps points in P1 to the corre-
sponding viewing lines in P2 for P (expressed using dual
coordinates). The relation between P andQ is simply

Q = P T

[
0 −1
1 0

]
. (14)

Since three lines in P2 written in dual coordinates as l, l′, l′′

converge if and only if |l, l′, l′′| = 0, we see that (t, t′, t′′)
in P1 × P1 × P1 form a correspondence for P , P ′,P ′′ if
and only if

Qt Q′t′ Q′′t′′ = 0, (15)

whereQ, Q′,Q′′ denote the inverse projection matrices for
P , P ′,P ′′. The expansion of this determinant, together
with (14), immediately yields (12) and (13).

The properties (1) and (2) can be shown computation-
ally. Alternatively, one can explicitly a describe method
for reconstructing two projectively distinct projection map-
pings from a general tensor. We do this below in the case
of “reduced” tensors. The fact that every tensor is a valid
trifocal tensor can also be argued informally by noting that
each projection has 5 degrees of freedom, so after removing
projective ambiguity (with 8 parameters) we are left with



5+5+5− 8 = 7 which correspond to all 2× 2× 2 tensors
up to scale.1

We now consider “reduced” projection mappings from
P2 to P1. Similarly to the 3D case discussed in the paper, a
reduced projection is determined by a center together with
3 fixed points in P2 in general position. In the following,
we will always assume that the three fixed points are basis
points for a projective reference frame. This leads to pro-
jection matrices of the form

Pc =

[
1/c1 0 −1/c3
0 1/c2 −1/c3

]
=

[
ĉ1 0 −ĉ3
0 ĉ2 −ĉ3

]
, (16)

where c = (c1, c2, c3)
T is the center of projection, and we

write ĉi = 1/ci for convenience. Specializing (13) for three
reduced cameras Pc, Pc′ , Pc′′ with c = (1, 1, 1)T , c′ =
(c′1, c

′
2, c
′
3)

T , c′′ = (c′′1 , c
′′
2 , c
′′
3)

T , yields

T 111 = 0, T 112 = ĉ′3ĉ
′′
1 − ĉ′2ĉ′′1

T 121 = ĉ′1ĉ
′′
2 − ĉ′1ĉ′′3 , T 122 = ĉ′1ĉ

′′
3 − ĉ′3ĉ′′1 ,

T 211 = ĉ′2ĉ
′′
3 − ĉ′3ĉ′′2 , T 212 = ĉ′2ĉ

′′
1 − ĉ′2ĉ′′3 ,

T 221 = ĉ′3ĉ
′′
2 − ĉ′1ĉ′′2 , T 222 = 0.

(17)

In addition to T 111 = 0 and T 222 = 0, we note that the
expressions for the remaining six coefficients always sum to
zero. Indeed, there are three “synthetic” constraints arising
from the fact that the standard basis points in each image
provide by construction three correspondences. However,
these three are the only constraints that such a tensor must
satisfy. In fact, we can give the following simple algorithm
for 2D reduced SFM.

1. Change coordinates in each image P1 using three
triples of correspondences to restrict to reduced pro-
jection matrices as in (16).

2. Estimate the six non-zero coefficients a, b, c, d, e, f of
the reduced trifocal tensor (17), under the condition
that they sum to zero, using an arbitrary number of
correspondences (at least five) in the new image co-
ordinates.

3. Use (17) to recover ĉ′1, ĉ
′
2, ĉ
′
3 and ĉ′′1 , ĉ

′′
2 , ĉ
′′
3 , and hence

c′, c′′ from the six coefficients a, b, c, d, e, f . There are
in general two solutions, which can be computed as
follows. Writing ρij = ĉ′iĉ

′′
j , we have that (17) yields

the following linear relation
0 0 −1 0 1 0
1 −1 0 0 0 0
0 1 0 0 −1 0
0 0 0 1 0 −1
0 0 1 −1 0 0
−1 0 0 0 0 1




ρ12
ρ13
ρ21
ρ23
ρ31
ρ32

 =


a
b
c
d
e
f

 .
(18)

1To make this argument more precise, one needs to observe that pro-
jective transformations act freely on triples of cameras (i.e., no projective
transformation of P2 fixes P ,P ′,P ′′ simultaneously).

The matrix on the left has rank 5, with a null-
space generated by (1, 1, 1, 1, 1, 1)T . This means
that we may write ρij = eij + t where
(e12, e13, e21, e23, e31, e32) is any vector that satis-
fies (18) and t is unknown. However, we may solve
for t using the fact that ρij must satisfy

ρ12ρ23ρ31 − ρ13ρ21ρ32 = 0. (19)

This yields a constraint on t, which is actually
quadratic rather than cubic, since the cubic term in t
cancels out from the two summands. Given a valid set
of ρij , it is straightforward to recover ĉ′i and ĉ′′j . In-
deed, it is sufficient for example to set

(ĉ′1, ĉ
′
2, ĉ
′
3) = (ρ12/ρ32, ρ21/ρ31, 1),

(ĉ′′1 , ĉ
′′
2 , ĉ
′′
3) = (ρ21/ρ23, ρ12/ρ13, 1).

(20)

Note that this procedure is very similar to the method
used in the proof of Proposition 4.3 in the paper. Indeed,
the trilinearities T1, T2, T3, T4 are closely related to the 2D
reduced trifocal tensor, and we will now spell out this rela-
tion in detail. We first recall the following fact from [3] (see
also Proposition 1.1 in the paper).

Proposition 1.4. Three image points u,u′,u′′ satisfy the
trilinearity Ti if and only if the three associated viewing
lines ξ, ξ′, ξ′′ admit a common transveral through the basis
point zi.

The geometric condition from Proposition 1.4 can be
expressed by considering an arbitrary projection Pzi

with
center zi, and imposing that the projections l, l′, l′′ of
ξ, ξ′, ξ′′ under Pzi are lines in P2 that converge at a point.
This is why 2D trifocal tensors come into play.

In what follows, we write c′r, c
′′
r for the points in P2 ob-

tained from c′, c′′ by excluding the r-th coordinate (e.g.,
c′2 = (c′1, c

′
3, c
′
4)

T ).

Proposition 1.5. The trilinearity Tr (r = 1, 2, 3, 4) applied
to u,u′,u′′ can be written as

T ijk
r (M ru)i(M ru

′)j(M ru
′′)k = 0, (21)

where T ijk
r is the reduced 2D trifocal tensor associated

with (1, 1, 1)T , c′r, c′′r (see (17) for the coefficients) and

M1 =

[
0 1 0
0 0 1

]
, M2 =

[
1 0 0
0 0 1

]
,

M3 =

[
1 0 0
0 1 0

]
, M4 =

[
1 0 −1
0 1 −1

]
.

(22)

Proof. This property can be verified computationally with a
computer algebra system using the expressions for Ti (given
in Proposition 8 of the paper), and for the reduced trifo-
cal tensor (17). A geometric justification based on Proposi-
tion 1.4 is as follows.



Let us focus on T1, for notational simplicity. The argu-
ment is identical for the other trilinearities. We consider the
following simple projection with pinhole z1

Pz1
=

0 1 0 0
0 0 1 0
0 0 0 1

 . (23)

Any triple of image points u,u′,u′′ (in distinct im-
ages) determines three lines l, l′, l′′ in the image plane of
Pz1 , which contain the points (1, 1, 1)T , c′1 = (c′2, c

′
3, c
′
4)

T ,
c′′1 = (c′′2 , c

′′
3 , c
′′
4)

T . These three points are in fact the im-
ages of c, c′, c′′ under Pz1

(i.e., they are three epipoles).
We can parameterize the three bundles through c1, c′1, c

′′
1

using the reference frame induced by the three points
Pz1(z2), Pz1(z3), Pz1(z4). This way, converging triplets
l, l′, l′′ are described by a reduced 2D trifocal tensor.

Finally, the coordinates in P1 of the lines associated
with u,u′,u′′ are given simply by M1u, M1u

′, M1u
′′.

This is because M1 is the unique projection matrix that
maps (0, 1, 0)T , (0, 0, 1)T , (1, 1, 1)T (which are images of
z2, z3, z4 for all three cameras) to the standard basis of P1.

In conclusion, a triplet u,u′,u′′ satisfies T1 if and only
if the associated lines l, l′, l′′ in the image plane of Pz1

con-
verge, and this in turn is equivalent to the fact that M1u,
M1u

′,M1u
′′ are three points in P1 which satisfy the con-

straint from the reduced 2D trifocal tensor.

Expanding (21) for r = 1, 2, 3 we obtain the expressions
for T1, T2, T3 given in equation (10) of the main part of the
paper. For completeness, we include here the explicit ex-
panded form of all the trilinearities:

T1 =u2u
′
2u

′′
3 (−ĉ′3ĉ′′2 + ĉ′4ĉ

′′
2 ) + u2u

′
3u

′′
2 (ĉ

′
2ĉ

′′
3 − ĉ′2ĉ′′4 )+

u2u
′
3u

′′
3 (−ĉ′4ĉ′′2 + ĉ′2ĉ

′′
4 ) + u3u

′
2u

′′
2 (−ĉ′4ĉ′′3 + ĉ′3ĉ

′′
4 )+

u3u
′
2u

′′
3 (ĉ

′
3ĉ

′′
2 − ĉ′3ĉ′′4 ) + u3u

′
3u

′′
2 (−ĉ′2ĉ′′3 + ĉ′4ĉ

′′
3 ),

T2 =u1u
′
1u

′′
3 (−ĉ′3ĉ′′1 + ĉ′4ĉ

′′
1 ) + u1u

′
3u

′′
1 (ĉ

′
1ĉ

′′
3 − ĉ′1ĉ′′4 )+

u1u
′
3u

′′
3 (−ĉ′4ĉ′′1 + ĉ′1ĉ

′′
4 ) + u3u

′
1u

′′
1 (−ĉ′4ĉ′′3 + ĉ′3ĉ

′′
4 )+

u3u
′
1u

′′
3 (ĉ

′
3ĉ

′′
1 − ĉ′3ĉ′′4 ) + u3u

′
3u

′′
1 (−ĉ′1ĉ′′3 + ĉ′4ĉ

′′
3 ),

T3 =u1u
′
1u

′′
2 (−ĉ′2ĉ′′1 + ĉ′4ĉ

′′
1 ) + u1u

′
2u

′′
1 (ĉ

′
1ĉ

′′
2 − ĉ′1ĉ′′4 )+

u1u
′
2u

′′
2 (−ĉ′4ĉ′′1 + ĉ′1ĉ

′′
4 ) + u2u

′
1u

′′
1 (−ĉ′4ĉ′′2 + ĉ′2ĉ

′′
4 )+

u2u
′
1u

′′
2 (ĉ

′
2ĉ

′′
1 − ĉ′2ĉ′′4 ) + u2u

′
2u

′′
1 (−ĉ′1ĉ′′2 + ĉ′4ĉ

′′
2 ),

T4 =u1u
′
1u

′′
2 (−ĉ′2ĉ′′1 + ĉ′3ĉ

′′
1 ) + u1u

′
1u

′′
3 (ĉ

′
2ĉ

′′
1 − ĉ′3ĉ′′1 )+

u1u
′
2u

′′
1 (ĉ

′
1ĉ

′′
2 − ĉ′1ĉ′′3 ) + u1u

′
2u

′′
2 (−ĉ′3ĉ′′1 + ĉ′1ĉ

′′
3 )+

u1u
′
2u

′′
3 (ĉ

′
3ĉ

′′
1 − ĉ′1ĉ′′2 ) + u1u

′
3u

′′
1 (−ĉ′1ĉ′′2 + ĉ′1ĉ

′′
3 )+

u1u
′
3u

′′
2 (ĉ

′
2ĉ

′′
1 − ĉ′1ĉ′′3 ) + u1u

′
3u

′′
3 (−ĉ′2ĉ′′1 + ĉ′1ĉ

′′
2 )+

u2u
′
1u

′′
1 (−ĉ′3ĉ′′2 + ĉ′2ĉ

′′
3 ) + u2u

′
1u

′′
2 (ĉ

′
2ĉ

′′
1 − ĉ′2ĉ′′3 )+

u2u
′
1u

′′
3 (−ĉ′2ĉ′′1 + ĉ′3ĉ

′′
2 ) + u2u

′
2u

′′
1 (−ĉ′1ĉ′′2 + ĉ′3ĉ

′′
2 )+

u2u
′
2u

′′
3 (ĉ

′
1ĉ

′′
2 − ĉ′3ĉ′′2 ) + u2u

′
3u

′′
1 (ĉ

′
1ĉ

′′
2 − ĉ′2ĉ′′3 )+

u2u
′
3u

′′
2 (−ĉ′2ĉ′′1 + ĉ′2ĉ

′′
3 ) + u2u

′
3u

′′
3 (ĉ

′
2ĉ

′′
1 − ĉ′1ĉ′′2 )+

u3u
′
1u

′′
1 (ĉ

′
3ĉ

′′
2 − ĉ′2ĉ′′3 ) + u3u

′
1u

′′
2 (−ĉ′3ĉ′′1 + ĉ′2ĉ

′′
3 )+

u3u
′
1u

′′
3 (ĉ

′
3ĉ

′′
1 − ĉ′3ĉ′′2 ) + u3u

′
2u

′′
1 (−ĉ′3ĉ′′2 + ĉ′1ĉ

′′
3 )+

u3u
′
2u

′′
2 (ĉ

′
3ĉ

′′
1 − ĉ′1ĉ′′3 ) + u3u

′
2u

′′
3 (−ĉ′3ĉ′′1 + ĉ′3ĉ

′′
2 )+

u3u
′
3u

′′
1 (−ĉ′1ĉ′′3 + ĉ′2ĉ

′′
3 ) + u3u

′
3u

′′
2 (ĉ

′
1ĉ

′′
3 − ĉ′2ĉ′′3 ).

(24)
We can also use Proposition 1.5 to prove theoretical

properties of all four trilinearities. The following statement
is equivalent to Proposition 4.3 in the main part of the paper.

Proposition 1.6. The internal constraints of each trilinear-
ity Tr are linear. More precisely, the coefficients in R27

that are entries of Ti for some choice of c′, c′′ form a linear
space, of dimension five. Moreover, the coefficients of Tr
characterize c′r and c′′r up to a two-fold ambiguity.

Proof. It follows from (21) that the coefficients of Tr are
images of the coefficients of T ijk

r under an injective linear
map (note that this map is completely described by the four
matrices (22)). Since the entries of a reduced 2D trifocal are
only constrained by three linear conditions, the coefficients
of Tr form linear spaces of dimension five. Moreover, the
knowledge of the Tr is equivalent to that of T ijk

r , which
means that c′r and c′′r are determined up to a two-fold ambi-
guity.

Finally, we provide some details on the proof of Propo-
sition 4.2 in the paper.

Proposition 4.2 A vector d = (dij) in R12 with no zero
entries can be written as dij = aibj for some vectors
a = (a1, a2, a3, a4)

T , b = (b1, b2, b3, b4)
T in R3 if and

only if dijdkl = dildkj holds for all permutations (i, j, k, l)
of (1, 2, 3, 4).

Proof. A factorization of d = (dij) exists if and only if
there is a rank-1 completion of

∗ d12 d13 d14
d21 ∗ d23 d24
d31 d32 ∗ d34
d41 d42 d43 ∗

 . (25)

Indeed, a completion corresponds to aT b ∈ R4×4. It is
clear that the constraints dijdkl = dildkj , which correspond



to certain 2 × 2 minors, are necessary. Conversely, it is al-
ways possible to deduce the diagonal elements, for exam-
ple:

d11 =
d13d21
d23

=
d14d21
d24

=
d12d31
d32

=
d14d31
d34

. (26)

The constraints dijdkl = dildkj guarantee equality among
all these expressions. Indeed, we have that for example
d12d23d31 = d21d32d13 because

d12
d13

d23
d21

d31
d32

=
d42
d43

d43
d41

d31
d32

=
d42d31
d43d32

= 1. (27)

This shows that if the quadratic constraints hold, we can
solve for the diagonal elements in (25), and the resulting
matrix will have rank one.

2. Synthetic data experiment
For completeness, we show in Figure 1 the mean value

of the mean reprojection and reconstruction errors for the
synthetic data used in Section 5.2 of our submission. Re-
call that the quality of the reconstruction was evaluated in
that section by measuring how well it predicts the reprojec-
tion of the remaining points in the dataset as well as their
3D reconstruction, once again registered to the ground truth
through a homography. We have used the same data as in
Section 5.2 to construct the curves shown in Figure 1. They
show the mean values of the mean reprojection and recon-
struction errors, given respectively in pixel and mm, for 40
random choices of the 7 point correspondences and differ-
ent values of the standard deviation σ (in pixel units) of
Gaussian noise added to the image coordinates. As noted
in our submission, Figure 1 shows that both the linear tri-
focal tensor estimation are occasionally thrown completely
off course for “bad” choices of the 7 correspondences, with-
out a clear winner in this case.
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Figure 1. Experiments with synthetic data using the mean of the
mean reprojection and reconstruction errors instead of their me-
dian. Compare to Figure 8 in our submission.


