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1. Overview

The workflow of our approach is outlined in Figure 1. An
initial (optional) pre-processing step compensates for non-
axis-alignment of the depicted knit patterns. This allows
handling tilted images of knitwear in our framework. In the
next step, the user provides exemplars of particular basic
stitch types, such as knits or purls within the image via an
intuitive interface. Subsequently, hypotheses regarding the
coarse localization of the individual stitch types are derived
based on searching image patches containing the respective
stitch types within the whole image. This serves as an ini-
tialization for the inference of the underlying grid structure,
which is performed in the next step of the pipeline. During
an error correction step to handle misclassified stitch types
in the grid, we simultaneously perform the detection of the
size of the repeating pattern. The final step is the derivation
of the underlying production rules and their conversion into
corresponding knitting instructions (in analogy to the depic-
tions in knitting books). These rules allow the reproduction
of the knitting pattern depicted in the input image.

2. Running Times and Problem Sizes

Table 1 provides an overview over the problem sizes and
computation times for the examples shown in this supple-
mental material (see Figure 9 for sample IDs 1, 2, 3, 4,
Figure 2 for sample ID 5 and Figure 3 for sample ID 6).

There is evidence that with an increasing problem size,
the computational times increase drastically. The computa-
tion times required for solving the corresponding ILP can be
significantly reduced by downsampling the likelihood maps
obtained from the extended BBS template matching [1]. As
demonstrated in Figure 2, a rescaling by the factor of 0.5
yields still similar results for the inferred grid structure at
significantly shorter processing time.

3. Pre-processing

Figure 8 demonstrates the pre-processing step of our
approach, which compensates for a possible non-axis-
alignment of the input image.

Table 1: Problem sizes and resulting running times: The
columns contain the image size (IS), the running times (in
seconds) of BBS (extended with additional gradient infor-
mation, as explaned in the paper), the downscaling factor
for the likelihood maps (S), the running times of the ILP as
well as the size of both the grid (GS) and the pattern (PS).
eG and eP denote the fraction of misclassified stitch types
for the overall grid and the pattern after error correction.

ID IS BBS S ILP GS PS eG eP
1 558× 300 202.91 0.5 6.75 7×5 2×2 0 0
1 558× 300 202.91 1 156.78 7×5 2×2 0 0
2 322× 299 37.46 0.25 0.22 5×7 1×2 0 0
2 322× 299 37.46 0.5 3.59 5×7 1×2 0 0
2 322× 299 37.46 1 70.12 5×7 1×2 0 0
3 684×413 99.62 0.5 10.03 10×9 5×4 2/90 0
3 684×413 99.62 1 264.18 10×9 5×4 2/90 0
4 1154×784 1103.46 0.5 103.59 16×15 7×7 11/240 0
5 529×214 18.10 0.5 3.10 10×6 4×2 0 0
5 529×214 18.10 1 72.07 10×6 4×2 0 0
6 885×207 118.84 0.5 11.93 11×3 5×1 0 0
6 885×207 118.84 1 292.38 11×3 5×1 0 0
7 687×171 44.94 0.5 6.21 10×3 8×1 3/30 0

4. Susceptibility to Template Selection

As stated in the paper, to evaluate the robustness regard-
ing the selection of templates for the individual stitch types,
we performed a study where 10 people aged between 10 and
67 years were asked to provide respective annotations. Ten
samples of each stitch type (knit and purl), similar to the
ones depicted in Figure 1 of the paper, were shown to each
participant. Finally the participants were asked to select one
sample of each type in the input image, whereby they were
asked to select respective templates that contained complete
stitches. Using these different stitch templates, we infer the
respective grid structure using our framework. Some of the
selections and the corresponding grids are shown in Fig-
ure 3.
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Figure 1: Overview of the proposed pipeline.

Figure 2: The resulting grid after the optimization step
without resizing the likelihood maps (top) and with a re-
sizing by a factor of 0.5 (bottom). Sample ID 5.

5. Computation of Row and Column Number
for Optimization

Figure 4 illustrates the typical result for the estimation of
the number of columns c and rows r based on one template
according to the pre-computation of the grid size for the op-
timization (see Section 4.4.2 in the paper). The rectangles
represent the templates for the knit (orange) and purl (blue)
stitch provided by the user. The same procedure is repeated
for the other template. As stated in the paper, the strips ex-
tracted from this step are analyzed to estimate uncertainties
in the spatial extensions of the stitches (see Figure 5), which
are then used for the optimization.

6. Distance Measure
In order to evaluate the distance measure which was used

to find a pattern size and to correct the errors of stitch
labelings, we considered four scenarios illustrated in Fig-

Figure 3: Examples of different template selections and the
resulting grids. Sample ID 6 (top).

ure 6. First the minimal distance was computed for a pat-
tern (which was detected from the grid in Figure 3) without
recognition errors. Afterwards, we added 3%, 7%, and 11%
random recognition errors respectively and evaluated the
minimal distance again. We simulated this procedure sev-
eral times and observed that our Hamming distance based
measure is robust against moderate recognition errors. Only
when the pattern is not recognizable due to a very high
amount of errors, our error correction procedure may fail



Figure 4: Detected number of rows and columns.
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Figure 5: Average stitch width wa and height ha, and uncer-
tainties uw, uh for different spatial extensions of stitches.

to find the correct size of the repeat.

Figure 6: Evaluation of the distance measure used to find
the correct size of the repeating pattern and to correct the er-
rors of stitch labelings. Entries with faded colors represent
stitch sizes discarded during the error correction procedure.
Cells with a dark blue colorization denote adequate pattern
sizes.

7. Comparison of the Extracted Repeat Pattern
We additionally provide an example for the extraction

of an as intuitive as possible repeating pattern from the un-
derlying grid structure. While an appropriate size of the
repeating pattern can be reliably detected by the error cor-
rection and pattern extraction step (see Section 4.5 of the

paper), the exploitation of the law of Prägnanz additionally
allows the extraction of a repeat without breaking existing
structures within the pattern such as triangles (see Figure 7
(left)).

Figure 7: The left image represents the pattern repeat found
by our algorithm based on the law of Prägnanz. This pattern
repeat is intuitive in the sense that the triangular structure is
preserved. In comparison, other ”shifted“ repeat patterns
(middle and right) of the same size appear not as ”intuitive“
as human observers cannot infer the underlying pattern that
easily.

8. Example with Three Stitch Types
To demonstrate the ability of our method to deal with

more than two stitch types, we provide a respective example
with three stitch types in Figure 10. Here, the stitch types
used in other examples (i.e. purl and (straight) knit) are
accompanied by a further type denoted as twisted knit. As a
consequence, the user provides three templates (marked in
green for twisted knit, orange for straight knit and blue for
purl) that are used to derive the likelihood maps. These are
used to infer the grid structure (including three stitch types).
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Figure 8: Automatic axis alignment using HOG in case of severe mis-alignments: The colored lines denote the dominant
gradient orientations and are used to align the input images (top row) with respect to the axes (bottom row).
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Figure 9: From left to right: input image, likelihoods for both stitch types, grid structure inferred via our approach and cor-
responding knitting instruction (empty cells represent knits and cells containing bars represent purls), as well as renderings.
Sample IDs 1, 2, 3, 4.
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Figure 10: Exemplary results for a knitting pattern involving three different stitch types (Sample ID 7). Besides the input im-
age with the user-provided stitch type selections, we show the grid structure inferred via our approach and the corresponding
knitting instruction (empty cells represent straight knits, cells containing squares represent twisted knits and cells containing
bars represent purls) (upper row). Furthermore, we show the likelihood maps for the individual stitch types (bottom row).


