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1. Cross-Entropy Method and Geometric Pro-
gram

In this section, we show how to transform Eq. (7) in the
main paper into a geometric program [2]. First, we rewrite
J(q) as follows:
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∑
i

∑
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pi(X = l) log
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Then, we can transform the following problem
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subject to
∑
k∈Li

q(X = k) ≤ ti, i = 1, . . . , N, (5)

where we add new variables ti, i = 1, . . . , N, to upper-
bound each posynomial term in the numerator of the ob-
jective function. This turns the objective into a log of a

monomial and adds inequality constraints to the formula-
tion. Since log is an increasing function and its argument
in the objective function is a monomial, removing log from
the objective does not affect the minimum. This leads us to

minimise
q,{ti}i
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subject to
∑
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q(X = k) ≤ ti, i = 1, . . . , N. (7)

which is a geometric program with variables q and ti [2].
With this formulation, we can further transform it into a
convex problem with a change of variable. Here, we define
ul ∈ R for l ∈ LU as q(X = l) = exp(ul) (i.e., ul =
log q(X = l)). Instead of changing q in (6), we directly
change q in (1). This transforms J(q) to

Ĵ({ul}l) = −
∑
i

∑
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pi(X = l)

(
ul − log

(∑
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))
,

(8)
which is Eq. (9) in the main paper.

2. Alternating Least Squares (ALS) for Matrix
Factorisation Methods

In this section, we detail the Alternative Least Squares
(ALS) [1] algorithms used for matrix factorisation in the
main paper.

2.1. ALS for matrix factorisation in probability
space

First, let us recall the formulation (Eq. (12) in the main
paper):

minimise
u,v

‖M� (P− uv>)‖2F (9)

subject to u>1L = 1 (10)
v ≥ 0N ,u ≥ 0L, (11)
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The ALS algorithm for solving the above formulation is
shown in Alg. 1. Steps 4 and 12 are derived from the closed-
form solution of u and v in the cost function, resp. Steps 5
and 13 project u and v to the nonnegative orthants to satisfy
the constraints in (11). Steps 7 to 10 are for normalising u to
sum to 1 per constraint (10). In fact, for this algorithm, steps
5 and 13 are actually not necessary. This is because all uj’s
from step 4 and vi’s from step 12 are already nonnegative
since they are the results of division between nonnagative
numbers. For termination criteria, we terminate the algo-
rithm if the RMSE between different iterations of u and v
is less than 10−3. We also use the maximum number of
iterations of 3000 as a termination criteria.

In terms of implementation, each for-loop can be com-
puted with vector operations (e.g., in MATLAB or with
Numpy in Python) instead of using for-loops. In addition,
the factorisation of different samples can be performed in
parallel on GPUs. These techniques allow a significant
speed up compared with the naive implementation.

Algorithm 1 Matrix factorisation in probabilty space
Input: M, P
Output: u, v

1: Initialise v := 1N

2: while not converged do
3: for j := 1, . . . , L do
4: uj :=

(∑N
i=1MjiPjivi

)
/
(∑N

i=1Mjiv
2
i

)
5: uj := max(0, uj)

6: end for
7: ū :=

∑L
j=1 uj

8: for j := 1, . . . , L do
9: uj := uj/ū

10: end for
11: for i := 1, . . . , N do
12: vi :=

(∑L
j=1MjiPjiuj

)
/
(∑L

j=1Mjiu
2
j

)
13: vi := max(0, vi)

14: end for
15: end while

2.2. ALS for matrix factorisation in logit space

Again, let us recall the formulation (Eq. (15) in the main
paper):

minimise
u,v,c

‖M� (Z− uv> − 1Lc
>)‖2F + λ(‖u‖22 + ‖v‖22)

(12)

subject to v ≥ 0N , (13)

The ALS for solving the above formulation is shown in
Alg. 2. The derivation is similar to that in Sec. 2.1. That
is, each step is derived via the closed-form solution of each

variable, followed by appropriate projection steps. We use
the same termination criteria as in previous section.

Algorithm 2 Matrix factorisation in logit space
Input: M, Z, λ
Output: u, v, c

1: Initialise ci :=
(∑L

j=1MjiZji

)
/
(∑L

j=1Mji

)
,∀i

2: Initialise v := 1N

3: while not converged do
4: for j := 1, . . . , L do
5: uj :=

(∑N
i=1Mji(Zji − ci)vi

)
/
(
λ+

∑N
i=1Mjiv

2
i

)
6: end for
7: for i := 1, . . . , N do
8: vi :=

(∑L
j=1Mji(Zji − ci)uj

)
/
(
λ+

∑L
j=1Mjiu

2
j

)
9: vi := max(0, vi)

10: end for
11: for i := 1, . . . , N do
12: ci :=

(∑L
j=1Mji(Zji − ujvi)

)
/
(∑L

j=1Mji

)
13: end for
14: end while

3. Computation cost

Recall that to tackle UHC, our approach comprises three
steps (Sec. 3 in the main paper, second paragraph): (i) ob-
taining {pi}i from x ∈ U and {Ci}i, (ii) estimating q from
{pi}i, and (iii) training CU from x and q. The compu-
tation cost of different methods in the main paper differs
only in step (ii), while it is the same for all methods in
steps (i) and (iii). Focusing on (ii), standard distillation
(Sec. 3.1) needs O(NL) to compute q from {pi}i, while
cross-entropy (Sec. 3.3) and matrix factorisation (Sec. 3.4)
methods need to solve an optimisation problem, incurring
much higher cost of O(tNL), where t is the number of op-
timisation iterations. However, step (ii) is parallelisable for
both cross-entropy and matrix factorisation methods, and
it is a fixed cost irrelevant of classifier models. In contrast,
the cost of training neural networks in step (iii) significantly
overwhelms this fixed cost, thus in practice the difference is
almost negligible.

4. Complete results for sensitivity analysis

In this section, we provide the results of sensitivity anal-
ysis of all methods. Fig. 1 shows the sensitivity result for
size of transfer set U ; Fig. 2 shows that of temperature T ;
and Fig. 3 shows that of accuracy of Ci’s. Note that we use
different legend style from the main paper to account for
more methods.
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Figure 1. Sensitivity results on the size of the unlabelled set U .
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Figure 2. Sensitivity results on the temperature T .
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Figure 3. Sensitivity results on the accuracy of Ci.


