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Appendix A. Proof of Theorem 1

The regularized MLE for covariance estimation of mul-
tivariate generalized Gaussian distribution takes the follow-
ing form:
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To optimize the objective function in Eqn. (1), we compute
the partial derivatives of Eqn. (1) with respect to 32, and set
it to zero. After some manipulations, we have
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Here shape and scale parameters (5 and 0) are known. As
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shown in [9], 0 can be estimated by (ﬁv ijén(y;‘t)ﬁ) ,

then Eqn. (2) can be written as
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Eqn. (1), as suggested in [9], we need to iteratively optimize

Eqn. (3) using the last estimation, i.e., ¥, = ijzg_llxn.

where w(x,,) (1237¢n,(y§)ﬂ‘ For solving

Let3; = 25:1 w(x,)xLx,, we rewrite Eqn. (2) as
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1. Analytic Solution of Eqn. (4)

Let 3; = UDiag(o4)U7” be the singular value decom-
position (SVD) of 3;, where Diag(c,) and U are Diag-
onal and orthogonal matrices consisting of singular values
o4 and eigenvectors, respectively. Let the SVD of X be
3 = UDiag(£4)U7, where Diag(&,) are diagonal matri-
ces with diagonal entries being singular values &, and U are

eigenvectors. Then Eqn. (4) becomes
—UDiag(a4)UT + (1 — A\)UDiag(¢,)U”
+ A\UDiag(2)UT =0. (5

Here, we state that Eqn. (5) can achieve an analytic solution
when U = U . Therefore, instead of solving the objective
function in Eqn. (5) , we optimize the following problem:

—Diag(oq) + (1 — \)Diag(&q) + ADiag(£3) =0,  (6)
which can be decomposed into d independent subproblems:
—oa+ (1= Aéa + 25 =0, (7

where Eqn. (7) is a quadratic equation with one unknown,
and the unique positive solution of &; has
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Hence, UDiag(¢;)U7 is an analytic solution of Eqn. (4).

2. Proof of Eqn. (9) being unique optimal solution of
Eqn. (4)

Next, we show Eqn. (8) is a unique optimal solution of
Eqn. (4) when U = U. It is clear that Eqn. (4) is an Al-
gebraic Riccati equation (ARE) with the unknown variate
3. As shown in [5, Sec. II] and control theory, ARE in
Eqn. (4) has an unique nonnegative solution. Let

3} = UDiag(&,)U7, ©)

where &  is given in Eqn. (8) and U="U.Itis easy to see
3 in Eqn. (9) satisfies the ARE in Eqn (4), i.e.,
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Method Param. GFLOPs | Tr/Infer. (ms) | Topl/Top5 (%) Method Birds | FGVC Aircrafts | Stanford Cars
ResNet-50 [3] 25.56M 3.87 6.06/2.33 247178 ResNet-30 [3] 784 792 S47
RSSNC{-jO (M) [ ] 25.56M 6.07 7.29/2.58 24.95/7.52 Compact B_CNN [ ] 816 816 886
iSQRT-COV (32K) [6] | 56.98M 6.31 8.88/3.04 22.14/6.22 KP[1] 847 857 911
3G-Net (32K) 57.98M 6.37 9.28/3.10 21.31/5.61 X : : :
3G-Net w/o R (32K) 57.98M 6.17 9.11/3.01 25.17/8.14 iSQRT-COV [6] 88.1 90.0 92.8
3G-Net (2K) 25.75M 6.09 8.07/2.73 22.42/6.37 3G-Net 88.6 90.7 94.0

Table Al. Comparison using ResNet-50 on ImageNet-1K. Param.
indicates model size. Tr. and Infer. mean run time per frame in
training and inference stages. All methods are evaluated on a PC
with single NVIDIA GTX 1080 Ti GPU.

Hence, Sin Eqn. (9) is the unique optimal solution of ob-
jective function (4). In summary, we can solve the objec-
tive function in Eqn. (1) by iteratively computing w(x,,) in
Eqn. (3) and & in Eqn. (9).

Appendix B. Comparison of Computational
Complexity

Here we discuss computational complexity of our 3G-
Net in terms of model size of networks (i.e., number of
parameters), floating point operations per second (FLOPs),
and training/inference time per frame. The experiments are
conducted using ResNet-50 as backbone model on a PC
equipped with a single NVIDIA GTX 1080 Ti GPU. The
results are summarized in Table A1, and we conclude them
into the following three points.

1. Comparison with Counterparts Our 3G-Net acqui-
escently outputs a 32K representation by reducing dimen-
sion (d) of last activations from 2048 to 256. As given
in 4th column of Table Al, although 3G-Net (32K) have
larger model size and FLOPs, training/inference time of
3G-Net (32K) is affordable in comparison to the original
ResNet-50. Meanwhile, computational complexity of 3G-
Net is similar to its counterpart iSQRT-COV. If we reduce
d from 2048 to 64, our 3G-Net outputs a 2K representation,
which is similar with ResNet-50. As shown in top and bot-
tom of Table A1, 3G-Net (2K) has similar model size and
inference time with ResNet-50, but still obtains more than
2% gains. It indicates our 3G-Net can improve CNN mod-
els with similar complexity.

2. Modified ResNet For fair comparison, we follow the
settings in [7] to remove the last downsampling in ResNet-
50, indicted by ResNet-50 (M). As shown in top two rows
of Table A1, GFLOPs of ResNet-50 (M) increases because
size of feature maps in last block enlarges. However, it
does not change model size of networks, and only brings ex-
tra 1.23/0.25 ms training/inference time. Meanwhile, such
modification has little effect on test error.

3. Robust Estimator As compared in 4¢h and 5th rows
of Table A1, our robust estimator (4th row) brings no extra
parameters, and is on par with non-robust one (5¢th row) in
space/time complexity. Note that our 3G-Net with robust
estimator greatly outperforms the one w/o robust estimator.

Table A2. Results of different methods with ResNet-50 architec-
ture on three widely used fine-grained benchmarks.

Appendix C. Additional Results on FGVC

We apply the proposed 3G-Net to fine-grained visual
recognition (FGVC) task. For comparison, we follow the
same settings in [6], and conduct experiments on three
widely used fine-grained benchmarks, including Birds [10],
FGVC Aircrafts [8] and Stanford Cars [4]. ResNet-50 is
used as backbone model, and results of different methods
are listed in Table A2, where the results of ResNet-50, Com-
pact B-CNN and KP are duplicated from [I] and the re-
sults of iISQRT-COV are copied from [0]. From Table A2
we can see that our 3G-Net obtains accuracies of 88.6%,
90.7%, 94.0% on Birds, FGVC Aircrafts, Stanford Cars,
respectively. It clearly outperforms the original ResNet-50
(78.4%, 79.2%, 84.7% ) and its counterparts [2, |, 6]. In
future, we will try to apply our method to object detection
or segmentation tasks.
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