Supplementary Material for Deep Global Generalized Gaussian Networks

Qilong Wang¹, Peihua Li², Qinghua Hu¹, Pengfei Zhu¹, Wangmeng Zuo³

¹Tianjin University, ²Dalian University of Technology, ³ Harbin Institute of Technology

{qlwang,huqinghua,zhupengfei}@tju.edu.cn, peihuali@dlut.edu.cn, wmzuo@hit.edu.cn

Appendix A. Proof of Theorem 1

The regularized MLE for covariance estimation of multivariate generalized Gaussian distribution takes the following form:

$$\arg \min_{\boldsymbol{\Sigma}} \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n^T \boldsymbol{\Sigma}^{-1} \mathbf{x}_n)^{\beta} + \log |\boldsymbol{\Sigma}| \qquad (1)$$
$$+ \lambda \operatorname{tr}(\boldsymbol{\Sigma} - \log(\boldsymbol{\Sigma})).$$

To optimize the objective function in Eqn. (1), we compute the partial derivatives of Eqn. (1) with respect to Σ , and set it to zero. After some manipulations, we have

$$-\frac{\beta}{N}\sum_{n=1}^{N}\frac{\mathbf{x}_{n}^{T}\mathbf{x}_{n}}{(\mathbf{x}_{n}^{T}\boldsymbol{\Sigma}^{-1}\mathbf{x}_{n})^{1-\beta}} + (1-\lambda)\boldsymbol{\Sigma} + \lambda\boldsymbol{\Sigma}\boldsymbol{\Sigma} = \mathbf{0}.$$
 (2)

Here shape and scale parameters (β and δ) are known. As shown in [9], δ can be estimated by $\left(\frac{\beta}{dN}\sum_{j\neq n}(y_j^t)^{\beta}\right)^{\frac{1}{\beta}}$, then Eqn. (2) can be written as

$$-\sum_{n=1}^{N} w(\mathbf{x}_n) \mathbf{x}_n^T \mathbf{x}_n + (1-\lambda) \boldsymbol{\Sigma} + \lambda \boldsymbol{\Sigma} \boldsymbol{\Sigma} = \mathbf{0}, \quad (3)$$

where $w(\mathbf{x}_n) = \frac{Nd}{y_n^t + (y_n^t)^{1-\beta} \sum_{j \neq n} (y_j^t)^{\beta}}$. For solving Eqn. (1), as suggested in [9], we need to iteratively optimize Eqn. (3) using the last estimation, i.e., $y_n^t = \mathbf{x}_n^T \mathbf{\Sigma}_{t-1}^{-1} \mathbf{x}_n$. Let $\mathbf{\Sigma}_t = \sum_{n=1}^N w(\mathbf{x}_n) \mathbf{x}_n^T \mathbf{x}_n$, we rewrite Eqn. (2) as

$$-\Sigma_t + (1 - \lambda)\Sigma + \lambda\Sigma\Sigma = 0.$$
(4)

1. Analytic Solution of Eqn. (4)

Let $\Sigma_t = U \text{Diag}(\sigma_d) \mathbf{U}^T$ be the singular value decomposition (SVD) of Σ_t , where $\text{Diag}(\sigma_d)$ and \mathbf{U} are Diagonal and orthogonal matrices consisting of singular values σ_d and eigenvectors, respectively. Let the SVD of Σ be $\Sigma = \widehat{\mathbf{U}} \text{Diag}(\xi_d) \widehat{\mathbf{U}}^T$, where $\text{Diag}(\xi_d)$ are diagonal matrices with diagonal entries being singular values ξ_d and $\widehat{\mathbf{U}}$ are

eigenvectors. Then Eqn. (4) becomes

$$-\mathbf{U}\mathrm{Diag}(\sigma_d)\mathbf{U}^T + (1-\lambda)\mathbf{U}\mathrm{Diag}(\xi_d)\mathbf{U}^T + \lambda \widehat{\mathbf{U}}\mathrm{Diag}(\xi_d^2)\widehat{\mathbf{U}}^T = \mathbf{0}.$$
 (5)

Here, we state that Eqn. (5) can achieve an analytic solution when $\hat{\mathbf{U}} = \mathbf{U}$. Therefore, instead of solving the objective function in Eqn. (5), we optimize the following problem:

$$-\text{Diag}(\sigma_d) + (1 - \lambda)\text{Diag}(\xi_d) + \lambda\text{Diag}(\xi_d^2) = \mathbf{0}, \quad (6)$$

which can be decomposed into d independent subproblems:

$$-\sigma_d + (1-\lambda)\xi_d + \lambda\xi_d^2 = 0, \tag{7}$$

where Eqn. (7) is a quadratic equation with one unknown, and the unique positive solution of ξ_d has

$$\xi_d = \sqrt{\left(\frac{1-\lambda}{2\lambda}\right)^2 + \frac{\sigma_d}{\lambda} - \frac{1-\lambda}{2\lambda}}.$$
 (8)

Hence, \mathbf{U} Diag $(\xi_d)\mathbf{U}^T$ is an analytic solution of Eqn. (4).

2. Proof of Eqn. (9) being unique optimal solution of Eqn. (4)

Next, we show Eqn. (8) is a unique optimal solution of Eqn. (4) when $\widehat{\mathbf{U}} = \mathbf{U}$. It is clear that Eqn. (4) is an Algebraic Riccati equation (ARE) with the unknown variate Σ . As shown in [5, Sec. II] and control theory, ARE in Eqn. (4) has an unique nonnegative solution. Let

$$\widehat{\mathbf{\Sigma}} = \mathbf{U} \mathrm{Diag}(\xi_d) \mathbf{U}^T, \tag{9}$$

where ξ_d is given in Eqn. (8) and $\widehat{\mathbf{U}} = \mathbf{U}$. It is easy to see $\widehat{\Sigma}$ in Eqn. (9) satisfies the ARE in Eqn (4), i.e.,

$$-\Sigma_{t} + (1 - \lambda)\widehat{\Sigma} + \lambda\widehat{\Sigma}\widehat{\Sigma}$$

$$= -\mathbf{U}\mathrm{Diag}(\sigma_{d})\mathbf{U}^{T} + \mathbf{U}\left((1 - \lambda)\mathrm{Diag}(\xi_{d}) + \lambda\mathrm{Diag}(\xi_{d}^{2})\right)\mathbf{U}^{T}$$

$$= \mathbf{U}\left(-\mathrm{Diag}(\sigma_{d}) + (1 - \lambda)\mathrm{Diag}(\xi_{d}) + \lambda\mathrm{Diag}(\xi_{d}^{2})\right)\mathbf{U}^{T}$$

$$= \mathbf{0}.$$
(10)

Method	Param.	GFLOPs	Tr./Infer. (ms)	Top1/Top5 (%)
ResNet-50 [3]	25.56M	3.87	6.06/2.33	24.7/7.8
ResNet-50 (M) [7]	25.56M	6.07	7.29/2.58	24.95/7.52
iSQRT-COV (32K) [6]	56.98M	6.31	8.88/3.04	22.14/6.22
3G-Net (32K)	57.98M	6.37	9.28/3.10	21.31/5.61
3G-Net w/o R (32K)	57.98M	6.17	9.11/3.01	25.17/8.14
3G-Net (2K)	25.75M	6.09	8.07/2.73	22.42/6.37

Table A1. Comparison using ResNet-50 on ImageNet-1K. Param. indicates model size. Tr. and Infer. mean run time per frame in training and inference stages. All methods are evaluated on a PC with single NVIDIA GTX 1080 Ti GPU.

Hence, $\hat{\Sigma}$ in Eqn. (9) is the unique optimal solution of objective function (4). In summary, we can solve the objective function in Eqn. (1) by iteratively computing $w(\mathbf{x}_n)$ in Eqn. (3) and $\hat{\Sigma}$ in Eqn. (9).

Appendix B. Comparison of Computational Complexity

Here we discuss computational complexity of our 3G-Net in terms of model size of networks (i.e., number of parameters), floating point operations per second (FLOPs), and training/inference time per frame. The experiments are conducted using ResNet-50 as backbone model on a PC equipped with a single NVIDIA GTX 1080 Ti GPU. The results are summarized in Table A1, and we conclude them into the following three points.

1. Comparison with Counterparts Our 3G-Net acquiescently outputs a 32K representation by reducing dimension (d) of last activations from 2048 to 256. As given in 4th column of Table A1, although 3G-Net (32K) have larger model size and FLOPs, training/inference time of 3G-Net (32K) is affordable in comparison to the original ResNet-50. Meanwhile, computational complexity of 3G-Net is similar to its counterpart iSQRT-COV. If we reduce d from 2048 to 64, our 3G-Net outputs a 2K representation, which is similar with ResNet-50. As shown in top and bottom of Table A1, 3G-Net (2K) has similar model size and inference time with ResNet-50, but still obtains more than 2% gains. It indicates our 3G-Net can improve CNN models with similar complexity.

2. Modified ResNet For fair comparison, we follow the settings in [7] to remove the last downsampling in ResNet-50, indicted by ResNet-50 (M). As shown in top two rows of Table A1, GFLOPs of ResNet-50 (M) increases because size of feature maps in last block enlarges. However, it does not change model size of networks, and only brings extra 1.23/0.25 ms training/inference time. Meanwhile, such modification has little effect on test error.

3. Robust Estimator As compared in 4th and 5th rows of Table A1, our robust estimator (4th row) brings no extra parameters, and is on par with non-robust one (5th row) in space/time complexity. Note that our 3G-Net with robust estimator greatly outperforms the one w/o robust estimator.

Method	Birds	FGVC Aircrafts	Stanford Cars
ResNet-50 [3]	78.4	79.2	84.7
Compact B-CNN [2]	81.6	81.6	88.6
KP [1]	84.7	85.7	91.1
iSQRT-COV [6]	88.1	90.0	92.8
3G-Net	88.6	90.7	94.0

Table A2. Results of different methods with ResNet-50 architecture on three widely used fine-grained benchmarks.

Appendix C. Additional Results on FGVC

We apply the proposed 3G-Net to fine-grained visual recognition (FGVC) task. For comparison, we follow the same settings in [6], and conduct experiments on three widely used fine-grained benchmarks, including Birds [10], FGVC Aircrafts [8] and Stanford Cars [4]. ResNet-50 is used as backbone model, and results of different methods are listed in Table A2, where the results of ResNet-50, Compact B-CNN and KP are duplicated from [1] and the results of iSQRT-COV are copied from [6]. From Table A2 we can see that our 3G-Net obtains accuracies of 88.6%, 90.7%, 94.0% on Birds, FGVC Aircrafts, Stanford Cars, respectively. It clearly outperforms the original ResNet-50 (78.4%, 79.2%, 84.7%) and its counterparts [2, 1, 6]. In future, we will try to apply our method to object detection or segmentation tasks.

References

- Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie. Kernel pooling for convolutional neural networks. In *CVPR*, 2017. 2
- [2] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear pooling. In CVPR, 2016. 2
- [3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *CVPR*, 2016. 2
- [4] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D object representations for fine-grained categorization. In *Workshop on* 3D Representation and Recognition, ICCV, 2013. 2
- [5] A. Laub. A Schur method for solving algebraic Riccati equations. *IEEE Trans. on Automat. Contr.*, 24:913–921, 1979. 1
- [6] P. Li, J. Xie, Q. Wang, and Z. Gao. Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In *CVPR*, 2018. 2
- [7] P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order information helpful for large-scale visual recognition? In *ICCV*, 2017. 2
- [8] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual classification of aircraft. Technical report, 2013. 2
- [9] F. Pascal, L. Bombrun, J. Tourneret, and Y. Berthoumieu. Parameter estimation for multivariate generalized Gaussian distributions. *IEEE TSP*, 61(23):5960–5971, 2013. 1
- [10] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset. Technical report, 2011. 2