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Appendix A. Proof of Theorem 1
The regularized MLE for covariance estimation of mul-

tivariate generalized Gaussian distribution takes the follow-
ing form:
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+ λtr(Σ− log(Σ)).

To optimize the objective function in Eqn. (1), we compute
the partial derivatives of Eqn. (1) with respect to Σ, and set
it to zero. After some manipulations, we have
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Here shape and scale parameters (β and δ) are known. As

shown in [9], δ can be estimated by
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then Eqn. (2) can be written as
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where w(xn) = Nd
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β . For solving

Eqn. (1), as suggested in [9], we need to iteratively optimize
Eqn. (3) using the last estimation, i.e., ytn = xTnΣ−1t−1xn.
Let Σt =

∑N
n=1 w(xn)x

T
nxn, we rewrite Eqn. (2) as

−Σt + (1− λ)Σ + λΣΣ = 0. (4)

1. Analytic Solution of Eqn. (4)

Let Σt = UDiag(σd)U
T be the singular value decom-

position (SVD) of Σt, where Diag(σd) and U are Diag-
onal and orthogonal matrices consisting of singular values
σd and eigenvectors, respectively. Let the SVD of Σ be
Σ = ÛDiag(ξd)Û

T , where Diag(ξd) are diagonal matri-
ces with diagonal entries being singular values ξd and Û are

eigenvectors. Then Eqn. (4) becomes

−UDiag(σd)U
T + (1− λ)ÛDiag(ξd)Û

T

+ λÛDiag(ξ2d)Û
T = 0. (5)

Here, we state that Eqn. (5) can achieve an analytic solution
when Û = U . Therefore, instead of solving the objective
function in Eqn. (5) , we optimize the following problem:

−Diag(σd) + (1− λ)Diag(ξd) + λDiag(ξ2d) = 0, (6)

which can be decomposed into d independent subproblems:

−σd + (1− λ)ξd + λξ2d = 0, (7)

where Eqn. (7) is a quadratic equation with one unknown,
and the unique positive solution of ξd has
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Hence, UDiag(ξd)U
T is an analytic solution of Eqn. (4).

2. Proof of Eqn. (9) being unique optimal solution of
Eqn. (4)

Next, we show Eqn. (8) is a unique optimal solution of
Eqn. (4) when Û = U. It is clear that Eqn. (4) is an Al-
gebraic Riccati equation (ARE) with the unknown variate
Σ. As shown in [5, Sec. II] and control theory, ARE in
Eqn. (4) has an unique nonnegative solution. Let

Σ̂ = UDiag(ξd)U
T , (9)

where ξd is given in Eqn. (8) and Û = U. It is easy to see
Σ̂ in Eqn. (9) satisfies the ARE in Eqn (4), i.e.,
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Method Param. GFLOPs Tr./Infer. (ms) Top1/Top5 (%)
ResNet-50 [3] 25.56M 3.87 6.06/2.33 24.7/7.8
ResNet-50 (M) [7] 25.56M 6.07 7.29/2.58 24.95/7.52
iSQRT-COV (32K) [6] 56.98M 6.31 8.88/3.04 22.14/6.22
3G-Net (32K) 57.98M 6.37 9.28/3.10 21.31/5.61
3G-Net w/o R (32K) 57.98M 6.17 9.11/3.01 25.17/8.14
3G-Net (2K) 25.75M 6.09 8.07/2.73 22.42/6.37

Table A1. Comparison using ResNet-50 on ImageNet-1K. Param.
indicates model size. Tr. and Infer. mean run time per frame in
training and inference stages. All methods are evaluated on a PC
with single NVIDIA GTX 1080 Ti GPU.

Hence, Σ̂ in Eqn. (9) is the unique optimal solution of ob-
jective function (4). In summary, we can solve the objec-
tive function in Eqn. (1) by iteratively computing w(xn) in
Eqn. (3) and Σ̂ in Eqn. (9).

Appendix B. Comparison of Computational
Complexity

Here we discuss computational complexity of our 3G-
Net in terms of model size of networks (i.e., number of
parameters), floating point operations per second (FLOPs),
and training/inference time per frame. The experiments are
conducted using ResNet-50 as backbone model on a PC
equipped with a single NVIDIA GTX 1080 Ti GPU. The
results are summarized in Table A1, and we conclude them
into the following three points.

1. Comparison with Counterparts Our 3G-Net acqui-
escently outputs a 32K representation by reducing dimen-
sion (d) of last activations from 2048 to 256. As given
in 4th column of Table A1, although 3G-Net (32K) have
larger model size and FLOPs, training/inference time of
3G-Net (32K) is affordable in comparison to the original
ResNet-50. Meanwhile, computational complexity of 3G-
Net is similar to its counterpart iSQRT-COV. If we reduce
d from 2048 to 64, our 3G-Net outputs a 2K representation,
which is similar with ResNet-50. As shown in top and bot-
tom of Table A1, 3G-Net (2K) has similar model size and
inference time with ResNet-50, but still obtains more than
2% gains. It indicates our 3G-Net can improve CNN mod-
els with similar complexity.

2. Modified ResNet For fair comparison, we follow the
settings in [7] to remove the last downsampling in ResNet-
50, indicted by ResNet-50 (M). As shown in top two rows
of Table A1, GFLOPs of ResNet-50 (M) increases because
size of feature maps in last block enlarges. However, it
does not change model size of networks, and only brings ex-
tra 1.23/0.25 ms training/inference time. Meanwhile, such
modification has little effect on test error.

3. Robust Estimator As compared in 4th and 5th rows
of Table A1, our robust estimator (4th row) brings no extra
parameters, and is on par with non-robust one (5th row) in
space/time complexity. Note that our 3G-Net with robust
estimator greatly outperforms the one w/o robust estimator.

Method Birds FGVC Aircrafts Stanford Cars
ResNet-50 [3] 78.4 79.2 84.7
Compact B-CNN [2] 81.6 81.6 88.6
KP [1] 84.7 85.7 91.1
iSQRT-COV [6] 88.1 90.0 92.8
3G-Net 88.6 90.7 94.0

Table A2. Results of different methods with ResNet-50 architec-
ture on three widely used fine-grained benchmarks.

Appendix C. Additional Results on FGVC
We apply the proposed 3G-Net to fine-grained visual

recognition (FGVC) task. For comparison, we follow the
same settings in [6], and conduct experiments on three
widely used fine-grained benchmarks, including Birds [10],
FGVC Aircrafts [8] and Stanford Cars [4]. ResNet-50 is
used as backbone model, and results of different methods
are listed in Table A2, where the results of ResNet-50, Com-
pact B-CNN and KP are duplicated from [1] and the re-
sults of iSQRT-COV are copied from [6]. From Table A2
we can see that our 3G-Net obtains accuracies of 88.6%,
90.7%, 94.0% on Birds, FGVC Aircrafts, Stanford Cars,
respectively. It clearly outperforms the original ResNet-50
(78.4%, 79.2%, 84.7% ) and its counterparts [2, 1, 6]. In
future, we will try to apply our method to object detection
or segmentation tasks.
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