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1. Network architecture details

Network backbone. Table 1 illustrates the details of our
backbone architecture (fθ in the main paper). For both vari-
ants, we use a ResNet-50 [2] until the final convolutional
layer of the 4-th stage. In order to obtain a higher spa-
tial resolution in deep layers, we reduce the output stride
to 8 by using convolutions with stride 1. Moreover, we in-
crease the receptive field by using dilated convolutions [1].
Specifically, we set the stride to 1 and the dilation rate to
2 in the 3×3 conv layer of conv4 1. Differently to the
original ResNet-50, there is no downsampling in conv4 x.
We also add to the backbone an adjust layer (a 1×1 con-
volutional layer with 256 output channels). Examplar and
search patches share the network’s parameters from conv1
to conv4 x, while the parameters of the adjust layer are
not shared. The output features of the adjust layer are then
depth-wise cross-correlated, resulting a feature map of size
17 × 17.

Network heads. The network architecture of the branches
of both variants are shows in Table 2 and 3. The conv5
block in both variants contains a normalisation layer and
ReLU non-linearity while conv6 only consists of a 1×1
convolutional layer.

Mask refinement module. With the aim of producing a
more accurate object mask, we follow the strategy of [5],
which merges low and high resolution features using multi-
ple refinement modules made of upsampling layers and skip
connections. Figure 1 illustrates how a mask is generated
with stacked refinement modules. Figure 2 gives an exam-
ple of refinement module U3.

∗Equal contribution. Work done while at University of Oxford.

block examplar output size search output size backbone
conv1 61×61 125×125 7×7, 64, stride 2

conv2 x 31×31 63×63

3×3 max pool, stride 2 1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 15×15 31×31

 1×1, 128
3×3, 128
1×1, 512

×4

conv4 x 15×15 31×31

 1×1, 256
3×3, 256

1×1, 1024

×6

adjust 15×15 31×31 1×1, 256
xcorr 17 × 17 depth-wise

Table 1: Backbone architecture. Details of each building
block are shown in square brackets.

block score box mask
conv5 1 × 1, 256 1 × 1, 256 1 × 1, 256
conv6 1 × 1, 2k 1 × 1, 4k 1 × 1, (63 × 63)

Table 2: Architectural details of the three-branch head. k
denotes the number of anchor boxes per RoW.

block score mask
conv5 1 × 1, 256 1 × 1, 256
conv6 1 × 1, 1 1 × 1, (63 × 63)

Table 3: Architectural details of the two-branch head.



conv	1 conv	2 conv	3 con	4

ResNet-50

1*1*256
(RoW)

𝑈"𝑈#

127*127*3

127*127*1
mask

conv	1 conv 2 conv	3 conv 4

255*255*3

adjust

adjust

15*15*256

31*31*256

17*17*256

𝑈$ 15*15*3231*31*16

15*15*102415*15*51231*31*25661*61*64

61*61*8
deconv, 

32127*127*4conv, 
3*3, 1Sigmoid

Figure 1: Schematic illustration of mask generation with stacked refinement modules.
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Figure 2: Example of a refinement module U3.
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Figure 3: Score maps from Mask branch at different loca-
tions.

2. Further qualitative results

Different masks at different locations. Our model gener-
ates a mask for each RoW. During inference, we rely on the

score branch to select the final output mask (using the loca-
tion attaining the maximum score). The example of Figure 3
illustrates the multiple output masks produced by the mask
branch, each corresponding to a different RoW.
Benchmark sequences. More qualitative results for VOT
and DAVIS sequences are shown in Figure 4 and 5.
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Figure 4: Further qualitative results of our method on sequences from the visual object tracking benchmark VOT-2018 [3].
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Figure 5: Further qualitative results of our method on sequences from the semi-supervised video object segmentation bench-
marks DAVIS-2016 [4] and DAVIS-2017 [6].


