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1. Introduction

This supplementary material provides more insights into
our General Pair Weighting (GPW) framework and Multi-
Similarity (MS) loss. First, in Section 2, we revisit three ad-
ditional existing pair-based loss functions under our GPW
framework. Next, in Section 3, we showcase the draw-
back of direct combination of binomial deviance loss [6]
and lifted structure loss [1] (BinLifted). Finally, we ana-
lyze the impact of batch-size on MS loss with substantial
experiments on CUB200 and SOP datasets.

2. Revisit Pair-based Loss Functions

Here we analyze other pair-based loss functions: N-pairs
loss [3], NCA loss [2] and histogram loss [4].

N-pairs Loss. Proposed by Sohn et al. [3], N-pairs loss,
as a special case of lifted structure loss only considering sin-
gle positive pair, follows the exactly same analysis process
of lifted structure loss in the main paper (Eq. 6-8 in Section
3.2).

NCA Loss. Salakhutdinov et al. introduced NCA loss in
[2] to learn a nonlinear embedding to optimize the classifi-
cation performance of the soft-KNN classifier:
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Then, following GPW framework, the weight of pair
{xi,xj}, i.e., wij , can be derived from differentiating Lnca

with respect to Sij :
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We find that in Eq. 2, the weights for positive and nega-
tive pairs are determined by their relative similarities com-
pared with the remaining pairs. And as the weight equations
show, NCA loss focuses on hard negative pairs and confi-
dent positive pairs, or say, pairs that are within neighbor
area of the anchor point in the embedding space.

Histogram Loss. Ustinova et al. [4] designed a his-
togram loss based on quadruplets, whose formulation is as
below:
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where R is the dimension of histograms for positive and
negative cosine similarities, h+

q is the histogram estimation
at node q of positive pairs’ cosine similarities, and h−r is
that of negatives at node r.
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Figure 1. Failure cases of BinLifted weighting scheme: in case-1, the negative pair below is assigned bigger weight than the top one, though
its is of much lower cosine similarity; in case-2, one negative is fixed when the other negative sample comes closer to the anchor, resulting
the negative pair’s Similarity-N to be lower.

where δijr is defined as:

δijr =

 (Sij − tr−1)/∆, Sij ∈ [tr−1, tr],
(tr+1 − Sij)/∆, Sij ∈ [tr, tr+1],
0, otherwise,

(5)

where ∆ = 2/(R− 1), tr = r∆− 1. The estimation of h−q
proceeds analogously.

Before computing the weights assigned for pairs under
GPW framework for the complication of histogram loss, we
first give the following equations to make the weight calcu-
lation more clear (details can be found in [4]).
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For one positive pair Sij
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where |S+| is the number of positive pairs, while we have

∂h−r
∂Sij

= 0, (8)

since h−r is calculated from negative pairs and thus is unre-
lated to the positive pair’s cosine similarity Sij .

Finally, the partial derivative of Lhist w.r.t. one positive

pair’s similarity Sij ∈ [tp, tp+1] is:
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Thus, the weight value assigned to this positive pair is
1

∆|S+|h
−
p . Similarly, for one negative pair with cosine sim-

ilarity Sij ∈ [tp, tp+1], its weight under histogram loss is
1

∆|S−|h
+
p+1.

Though with complicated formulation and rough deriva-
tion, the pair weight scheme of histogram loss is extremely
concise and clean as shown Eq. 9. h−p is approximately
the ratio of negative pairs that have lower cosine similari-
ties compared with the current positive pair ( 1

∆|S−| can be
regarded as a fixed normalizer). Similarly, the weight of
one negative pair is the ratio of positive pairs with lower
cosine similarity than it. Therefore, the weighting scheme
clearly indicts that histogram loss estimates pairs’ weights
only based on Similarity-P (comparing negative (or posi-
tive) pairs with positive (or negative respectively) pairs), re-
sulting the poor performance of histogram loss in deep met-
ric learning: it is less effective than binomial deviance loss
on CUB200 and SOP as described in [4].



3. BinLifted v.s. MS Weighting
In our ablation study (Section 5.1 in the main paper),

we show with experiments that our MS weighting is su-
perior to direct combination of binomial deviance loss and
lifted structure loss (BinLifted), though both are based on
Similarities-SN. Here we explain the benefits of our MS
weighting with example of one negative pair {xi,xj}. The
weight of this negative pair by Binlifted weighting scheme
ŵij is:
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From Eq. 10, the weight of BinLifted satisfies:
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Eq. 11 provides a lower bound for weight under Bin-
Lifted method. We find that one negative pair with high
relative similarity, resulting eβSij∑

yk 6=yi
eβSik

close to 1, will be

assigned with big weight by BinLifted according to Eq. 11
no matter how is its own cosine similarity is. As shown in
case-1 of Fig. 1, the weight of the bottom negative pair is
close to the top one within BinLifted, though the bottom
negative pair is of much lower cosine similarity. Further,
when the pair’s Similarity-S is higher than the threshold λ,

lending eβ(Sij−λ)

1+eβ(Sij−λ) to be significantly big, its will be as-
signed with considerable big weight regardless of its low
Similarity-N. As illustrated in case-2 of Fig. 1, the two neg-
ative pairs at the bottom will be assigned with close weight
values according to their high Similarity-S, while omitting
the huge gap between their relative similarity: Similarity-
N. However, the negative pair at the top of case-2 will also
be assigned with close weight to the bottom one, though its
Similarity is much higher.

In summary, BinLifted estimates the negative pair’s
weight mainly depends on the higher one between
Similarity-S and Similarity-N, while neglecting the other
one. This drawback lends to its poor performance, even
worse than the single binomial deviance loss as shown in
the ablation study.

In contrast, its weight assigned by MS weighting is:

wij =
eβ(Sij−λ)

1 +
∑
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eβ(Sik−λ)

. (12)

Therefore, MS weighting is able to update the negative
pairs’ weights dynamically to address case-1 and case-2
in Fig. 1 through making the best use of the information
contained in Similarities-SN (Eq. 12), not only focusing on
the higher one. Analysis for positive pairs proceeds analo-
gously.

Batch-size Recall@1 (%)
20 64.75
40 65.07
80 65.65
160 65.50
240 64.60

Table 1. Recall@1 performance of MS loss at the batch-size of
{20, 40, 80, 120, 160, 240} on CUB200.

Batch-size Recall@1 (%)
20 71.40
40 73.82
80 75.61
160 76.63
320 77.59
640 78.19
1000 78.35

Table 2. Recall@1 performance of MS loss at the batch-size of
{20, 40, 80, 160, 320, 640} on SOP.

4. Effects of Batch Size

To analyze the performance of MS loss at different
batch-size, we conduct experiments on the SOP [1] and
CUB200 [5] datasets. We set the embedding size as 512
and K = 5. We use Adam optimizer with learning
rate of 10−5 for all experiments. The recall@1 perfor-
mance of MS loss at the batch-size of {20, 40, 80, 160, 240}
on CUB200 and the recall@1 results at the batch-size of
{20, 40, 80, 160, 320, 640, 1000} on SOP are exhibited in
Tables 1 and 2.

We observe that batch-size effects the performance of
MS loss on CUB200 and SOP quite differently in two folds:
(i) CUB200 is less sensitive to the change of batch-size than
SOP. (ii) the performance on CUB decreases with larger
batch-sizes, while the retrieval result of model trained with
MS loss on SOP benefits from large batch-sizes signifi-
cantly.

This experimental results can be attributed to the fact that
CUB200 is a fine-grained dataset with smaller inter-class
variations than SOP, resulting higher ratio of hard negative
pairs. Moreover, as we observe in experiments at the batch-
size of 20 on SOP dataset, there isn’t even one informa-
tive pairs selected by MS mining at some iteration with a
frequency higher than 20%. Therefore, for datasets with
low inter-class variations like SOP, we need large batch-
sizes (e.g., larger than 320) to obtain considerable infor-
mative pairs for training a discriminative model. However,
for datasets with small differences between categories like
CUB200, the access to enough hard examples is not critical
for performance boost.
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