
SUPPLEMENTARY MATERIALS
Bilateral Cyclic Constraint and Adaptive Regularization

for Unsupervised Monocular Depth Prediction

Alex Wong, Stefano Soatto
UCLA Vision Lab

University of California, Los Angeles, CA 90095
{alexw, soatto}@cs.ucla.edu

1. Problem Formulation
In this section, we give the formulation for predicting the disparities for a single view using stereo imagery as supervision.

Given a single image I0, our goal is to estimate a function d = f(I0, ω) ∈ R+ that represents the disparity of I0, where
f is a network parameterized by ω. We assume I0 belongs to a stereo-pair (I0, I1) with which we exploit I1 to learn a
representation d for predicting scene geometry from I0 by maximizing the posterior distribution:

p(d|I0, I1) ∝ p(I1|I0, d) · p(I0, d) (1)

We assume that both the likelihood p(I1|I0, d) and the prior p(I0, d) follow a Laplacian distribution. The likelihood can be
approximated by a data fidelity term g(I0, I1, d) and the prior by a regularization term h(I0, d) and will have the form:

p(I1|I0, d) ≈ exp(−g(I
0, I1, d)

a
) (2)

p(I0, d) ≈ exp(−h(I
0, d)

b
) (3)

We then take the negative log to form our data and regularization terms:

− log p(d|I0, I1) ∝ − log exp(−g(I
0, I1, d)

a
) · exp(−h(I

0, d)

b
)

∝ 1

a
g(I0, I1, d) +

1

b
h(I0, d)

∝ g(I0, I1, d)︸ ︷︷ ︸
data fidelity

+α h(I0, d)︸ ︷︷ ︸
regularization

(4)

Given I1 and d, we can derive Î0 = I1
xy+dxy

. We substitute g(I0, I1, d) with a generic image reconstruction function:

g(I0, I1, d) =
∑

(x,y)∈Ω

|I0
xy − Î0

xy| (5)

We can similarly substitute h(I0, d) with a generic prior such as local smoothness with edge-awareness:

h(I0, d) =
∑

(x,y)∈Ω

|(λxy(I0)|∂Xd0
xy|+ λxy(I

0)|∂Y d0
xy|)| (6)

1



Figure 1: An example of the behavior of our residual-based adaptive weighting scheme (as describe in Sec. 3.2 from main
text) in the process of training our model. Top row from left to right: the mean of α applied to resolution r = 0 (full
resolution) and resolution r = 1 (one-half resolution) of the loss pyramid. Bottom row from left to right: mean of α applied
to resolution r = 2 (one-quarter resolution) and resolution r = 3 (one-eighth resolution). The value recorded (light orange)
is the mean of the weights that is being applied to the regularization terms of our model. A weight αxy is assigned to each
(x, y) position of the solution; hence, the set of weights α will vary spatially across the image domain. The trend line (dark
orange) shows that the average weight for regularization is increasing over time (implying that residual is decreasing over
time) – the training time varying property exhibited by our adaptive weighting scheme.

2. Adaptive Regularization
Our adaptive regularization weighting scheme α (Sec. 3.2 from main text) allows us to have a model-driven approach to

regularization. While a number of literature have exploited a data-driven approach to regularization by weighting the amount
of regularity imposed by the structure of the data (e.g. gradients of an image [1, 2]), this class of approaches are still static
in terms of weights for a given example as the same image will always give the same weights. Our approach is both model-
driven as well as data-driven as our regularization weighting scheme (Eqn. 6 from main text) is a function of the output of
the model and the data-fidelity residual (as determined by reconstruction of the images).

Traditionally, the weight of the regularization terms is a static scalar. However, we argue that imposing the same amount
of regularity to the entire solution fails to address corner cases. We propose that α should be spatially varying and inversely
proportional to the local residual. While the notion of “trusting” the prior (or the regularizers) when data-fidelity fails to
explain the scene is intuitive, this assumption is only valid once we are able to sufficiently satisfy the data-fidelity term;
otherwise we are restricting our model to a biased set of solutions without having fully explored the solution space. This
is apparent in the example given in Sec. 3.2 of the main text regarding the training time varying property of α – a solution
proposed at the first time step cannot be trusted in terms of its data-fidelity and hence we should not impose regularity.
Therefore, we propose that our weighting scheme α → 0 when residual is large and α → 1 as the residual tends to 0.
Naturally the data-fidelity residual decreases over time as the training progresses, which we exploit instead of directly making
α a function of training time. Thus, when the model converges, α will also converge.

We apply our adaptive weighting scheme to each of the regularization terms (Sec. 3.3 from main text) at each level of the
loss pyramid for a total of four levels beginning from the full resolution to one-eighth resolution. Fig. 1 shows the behavior
of the adaptive weights on each level of the loss pyramid. The figure was taken from a training process. The recorded value
in dark orange is the trend line representing the mean of the weights that is being applied to our solution. We see that as the
model improves our adaptive weights proportionally increase, which equivalently impose regularity on the model.



Figure 2: An illustration of our bilateral cyclic constraint with two examples (each example spans two columns). Top to
bottom: left image that serves as input to the network with a whitened right image used only in the loss function, initial
left and right disparities, projected left and right disparities, reconstructed left and right disparities through back-projection,
and absolute difference between the initial disparities and their reconstructions. Our network predicts both the left and
right disparities associated with the input left image to enable us to enforce our bilateral cyclic constraint. The right image
(whitened) is not given to the network and is only shown to give a frame of reference for the right disparities predicted. From
the heat maps (last row), we see that the regions of high intensity (error) is associated with occlusion boundaires (e.g. the
missing sections of the cars in the left side of the imagse along with the edges of the cars). In such cases where there are no
correspondences (yielding high reconstruction error), our adaptive regularization scheme will discount such regions.

3. Bilateral Cyclic Consistency
In this work, we propose using a bilateral cyclic constraint as a way of regularizing the behavior of the predicted disparities.

Our model enforces bilateral cyclic consistency (Sec. 3.3 from main text) by projecting the set of disparities of a given image
in a stereo pair to its counter-part and back-projected to itself as a reconstruction (Eqn. 9 from main text). We then apply an
L1 penalty to the difference between the initial disparities and its reconstruction. By doing so, we are imposing regularity
on the disparity map in its original frame of reference as opposed to a relative frame of reference (i.e. left-right consistency).
By enforcing the cyclic application of the disparities to be the identity, we constrain that the correspondences found in both
images are co-visible regions. In the case of occlusions, the constraint will be violated, yielding high loss. While a solution
would be to discount such errors by setting an arbitrary threshold (as attempting to reconstruct a region that does not exist
can never yield a correct solution), our adaptive weighting scheme (Sec. 3.2 from main text) provide an elegant solution to
such scenarios. As one can never find correct correspondences for occluded regions of two images, this naturally lends to a
high data-fidelity residual with which we adaptively discount using α.

We illustrate the cyclic application of the left and right disparities in Fig. 2. Although we are never given the right
image (whitened image) of the stereo pair, our network successfully hallucinates its existence and predicts the corresponding
disparities to enable our bilateral cyclic consistency check. The areas of inconsistency between the initial disparities and their
reconstructions (last row of Fig. 2) exist near the occlusion boundaries, which we use α to effectively guide our model to
regularize these regions to improve depth consistency.

4. Ablation Studies on Eigen Split
Table 1 shows an ablation study on the KITTI Eigen split benchmark. The two rows following our full model and our

full modeling using the proposed two-branch decoder (Sec. 4 of main paper) denotes the percentage improvement over [2]
and [3]. Our full model using a generic encoder with a single-branch decoder outperforms the top performing methods [2, 3]



Error Metrics Accuracy Metrics

Method Abs Rel Sq Rel RMS logRMS δ < 1.25 δ < 1.252 δ < 1.253

80 Meter Depth Cap

ph+ st+ λGsm+ lr (Godard et al. [2]) 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhan et al. [3] (w/ video) 0.144 1.391 5.869 0.241 0.803 0.928 0.969

ph+ st+ αλGsm+ αlr ([2] w/ Our Adaptive Regularization) 0.145 1.302 5.790 0.245 0.807 0.923 0.965

ph+ st+ λLsm+ bc (Ours w/o Adaptive Regularization) 0.141 1.266 5.761 0.241 0.811 0.925 0.965

ph+ st+ αλLsm+ αlr (Ours w/o Bilateral Cyclic Consistency) 0.140 1.290 5.746 0.238 0.817 0.929 0.967

ph+ st+ αλGsm+ αbc (Ours w/o Bidirectional Edge-Awareness) 0.138 1.191 5.637 0.237 0.817 0.929 0.967

ph+ st+ αλLsm+ αbc (Ours Full Model) 0.135 1.157 5.556 0.234 0.820 0.932 0.968

Ours (Full Model) % Improvement over [2] 8.8% 13.9% 6.3% 5.3% 2.1% 1.1% 0.4%

Ours (Full Model) % Improvement over [3] 6.3% 16.8% 5.3% 2.9% 2.1% 0.4% 0.1%

ph+ st+ αλLsm+ αbc * (Ours Full Model w/ 2 Branch Decoder) 0.133 1.126 5.515 0.231 0.826 0.934 0.969

Ours (Full Model)* % Improvement over [2] 10.1% 16.2% 7.0% 6.5% 2.9% 1.3% 0.5%

Ours (Full Model)* % Improvement over [3] 7.6% 19.1% 6.0% 4.1% 2.9% 0.6% 0.0%

50 Meter Depth Cap

ph+ st+ λGsm+ lr (Godard et al. [2]) 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Zhan et al. [3] (w/ video) 0.135 0.905 4.366 0.225 0.818 0.937 0.973

ph+ st+ αλGsm+ αlr ([2] w/ Our Adaptive Regularization) 0.138 0.957 4.417 0.230 0.824 0.933 0.970

ph+ st+ λLsm+ bc (Ours w/o Adaptive Regularization) 0.134 0.944 4.389 0.227 0.825 0.934 0.969

ph+ st+ αλLsm+ αlr (Ours w/o Bilateral Cyclic Consistency) 0.133 0.942 4.351 0.224 0.832 0.937 0.971

ph+ st+ αλGsm+ αbc (Ours w/o Bidirectional Edge-Awareness) 0.131 0.881 4.265 0.224 0.832 0.937 0.971

ph+ st+ αλLsm+ αbc (Ours Full Model) 0.128 0.856 4.201 0.220 0.835 0.939 0.972

Ours (Full Model) % Improvement over [2] 8.6% 12.3% 6.0% 5.2% 2.1% 0.9% 0.3%

Ours (Full Model) % Improvement over [3] 5.2% 5.4% 3.8% 2.2% 2.1% 0.2% 0.1%

ph+ st+ αλLsm+ αbc * (Ours Full Model w/ 2 Branch Decoder) 0.126 0.832 4.172 0.217 0.840 0.941 0.973

Ours (Full Model)* % Improvement over [2] 10.0% 14.7% 6.7% 6.5% 2.7% 1.1% 0.4%

Ours (Full Model)* % Improvement over [3] 6.7% 8.1% 4.4% 3.6% 2.7% 0.4% 0.0%

Table 1: Ablation study on the KITTI Eigen split [4]. We compare each variant of our model to the top performing methods
in the monocular depth prediction task. Our full model using a generic single-branch decoder consistently outperforms the
best previous methods [2, 3] in all metrics across both depth caps. Each of our partial models improves over the baseline [2]
consistently across all metrics and depth caps. In fact, our model without using our bidirectionally informed edge-awareness
is already able to exceed the performance of [3] on most metrics, despite not using temporal knowledge and multiple networks
as [3] did, with the exception of δ < 1.253, where [3] marginally beat us by approximately 0.1%. Our full model using our
two-branch decoder (marked by *) outperforms all variants across all metrics and depth caps and is the state-of-the-art. We
show the relative percentage boost in performance in all metrics in the two rows following the results of our full model using
a single-branch decoder and our full model using a two-branch decoder(*).

across all metrics under both depth caps. Notably, we improve over [2] and [3] by an average of 8.7% and 5.75% in AbsRel,
13.1% and 11.1% in SqRel and even 5.25% and 2.55% in logRMS, respectively. Furthermore, we improve 2.1% over both
in δ < 1.25 (the hardest accuracy metric). [3] is only able to outperform our full model marginally in the δ < 1.253 metric
by 0.1% despite using multiple networks and stereo video streams for training as opposed to stereo pairs.

Moreover, each of our partial models using the generic encoder with the single-branch decoder (same network as [2])
shows improvement over the baseline [2]. Even by simply applying our adaptive regularization to [2], we improve con-



sistently across all metrics. More importantly, our model without bidirectionally informed edge-awareness is already able
to outperform [3] on most metrics across both depth caps with the exception of δ < 1.252 and δ < 1.253 where we are
comparable. Based on Table 1, we can see that each of our individual contribution improves the model. There is a significant
performance gain when multiple contributions are applied to the model (e.g. adaptive regularization with bilateral cyclic con-
sistency versus [2] with adaptive regularization). The strongest model is produced when all of the contributions are combined
as each contribution complements the others to resolve inconsistencies in object boundaries, co-visible and occluded regions.

Furthermore when applying our full model using the proposed two-branch decoder, we further improve over all methods.
Specifically, we improve over [2] and [3] by an average of 10.05% and 7.15% in AbsRel, 15.45% and 13.6% in SqRel,
6.85% and 5.2% in RMS, and 6.5% and 3.85% in logRMS, respectively. We even improve 2.8% over both in δ < 1.25. [3]
is comparably to us in δ < 1.253 metric. Our full model using the proposed two-branch decoder is the state-of-the-art in the
unsupervised single image depth prediction task.

5. Qualitative Comparison Between Single-Branch and Two-Branch Decoder
It is well-known that geometry can be recovered in co-visible regions (barring texture-less regions) simply by establishing

correspondence between two views of the scene. Our proposed decoder (Fig. 1 from main text) dedicates one branch to
learning the necessary features to satisfy data-fidelity, which in this case is the reconstruction between the stereo pairs. In
doing so, we also produce an initial solution that satisfies data-fidelity. The second branch then aims to refine such a solution
by learning the residual features from the skip connection necessary for adaptively imposing regularity. Fig. 3 gives a
qualitative comparison between the single-branch decoder (row 3) and the proposed two-branch decoder (row 4). We see that
the two-branch decoder consistently recovers more of the scene geometry, particularly thin structures and distant structures.
In cases where a thin structure (e.g. pole) lies close to a larger structure (e.g. walls of building) or a structure is located far
away, the single branch decoder often fail to recover their geometry. The two-branch decoder, however, is able to recover
distant structures and distinguish thin structures from larger nearby structures.

Figure 3: A qualitative comparison between the predictions of a single-branch decoder and the proposed two-branch decoder.
Top to bottom: the input image, ground-truth disparities, the results of a single-branch decoder, and the results of the proposed
two-branch decoder. The two-branch decoder consistently produces more detailed disparity maps that recovers more of the
scene geometry. In the left-most (first) column, while both decoders are able to correct predict the scene globally, the single-
branch decoder is unable to recover the details of sign in the distant whereas the two-branch decoder is able to fully recover
it. In the second column, the two-branch decoder can recover both of the poles for the sign on the right. In the third column,
the two-branch decoder is able to recover the small red pole on the left whereas the single-branch decoder can only recover it
partially. In the right-most column, the two-branch decoder is able to recover the small pole on the right next to the wall, the
sign in the distance next to the car, the sign above the van and the pole for the sign on the right.



6. Network Architectures
We trained our model using two architectures: 1) a generic encoder (Table 2) based on the VGGnet [5] architecture with

a single branch decoder 2) a generic encoder (same as the aforementioned) with our proposed two-branch decoder (Table 3,
Sec 4. from main paper).

kernel channels downscale

layer size stride in out in out input

Encoder

conv1 7 2 3 32 1 2 left

conv1b 7 1 32 32 2 2 conv1

conv2 5 2 32 64 2 4 conv1b

conv2b 5 1 64 64 4 4 conv2

conv3 3 2 64 128 4 8 conv2b

conv3b 3 1 128 128 8 8 conv3

conv4 3 2 128 256 8 16 conv3b

conv4b 3 1 256 256 16 16 conv4

conv5 3 2 256 512 16 32 conv4b

conv5b 3 1 512 512 32 32 conv5

conv6 3 2 512 512 32 64 conv5b

conv6b 3 1 512 512 64 64 conv6

conv7 3 2 512 512 64 128 conv6b

conv7b 3 1 512 512 128 128 conv7

Decoder

upconv7 3 2 512 512 128 64 conv7b

iconv7 3 1 1024 512 64 64 upconv7‖conv6b

upconv6 3 2 512 512 64 32 iconv7

iconv6 3 1 1024 512 32 32 upconv6‖conv5b

upconv5 3 2 512 256 32 16 iconv6

iconv5 3 1 512 256 16 16 upconv5‖conv4b

upconv4 3 2 256 128 16 8 iconv5

iconv4 3 1 128 128 8 8 upconv4‖conv3b

disp4 3 1 128 2 8 8 iconv4

upconv3 3 2 128 64 8 4 iconv4

iconv3 3 1 130 64 4 4 upconv3‖conv2b‖disp4*

disp3 3 1 64 2 4 4 iconv3

upconv2 3 2 64 32 4 2 iconv3

iconv2 3 1 66 32 2 2 upconv2‖conv1b‖disp3*

disp2 3 1 32 2 2 2 iconv2

upconv1 3 2 32 16 2 1 iconv2

iconv1 3 1 18 16 1 1 upconv1‖disp2*

disp1 3 1 16 2 1 1 iconv1

Table 2: Our network architecture follows that of [2] and [6] and we are able to outperform the baseline [2]. “in” and “out”
refers to the input and output channels and downscale factor due to striding for each layer. ‖ refers to the concatenation of
multiple layers. ∗ refers to up-sampling disparity predictions at a given resolution. Batch normalization was not used.



kernel channels downscale

layer size stride in out in out input

Encoder

conv0 7 1 3 32 1 1 left

conv1 7 2 32 32 1 2 conv0

conv1b 7 1 32 32 2 2 conv1

conv2 5 2 32 64 2 4 conv1b

conv2b 5 1 64 64 4 4 conv2

conv3 3 2 64 128 4 8 conv2b

conv3b 3 1 128 128 8 8 conv3

conv4 3 2 128 256 8 16 conv3b

conv4b 3 1 256 256 16 16 conv4

conv5 3 2 256 512 16 32 conv4b

conv5b 3 1 512 512 32 32 conv5

conv6 3 2 512 512 32 64 conv5b

conv6b 3 1 512 512 64 64 conv6

Table 3: Our proposed network architecture, which achieves
state-of-the-art. “in” and “out” refers to the input and output
channels and downscale factor due to striding for each layer.
‖ refers to the concatenation of multiple layers. ∗ refers to
up-sampling disparity predictions at a given resolution. The
branch prefixed with ‘i’ makes the initial prediction and the
branch prefixed with ‘r’ makes the final prediction.

kernel channels downscale

layer size stride in out in out input

Decoder

iupconv6 3 2 512 512 64 32 conv6b

iconv6 3 1 1024 512 32 32 iupconv6‖conv5b

iupconv5 3 2 512 256 32 16 iconv6

iconv5 3 1 512 256 16 16 iupconv5‖conv4b

iupconv4 3 2 256 128 16 8 iconv5

iconv4 3 1 256 128 8 8 iupconv4‖conv3b

idisp4 3 1 128 2 8 8 iconv4

sconv4 3 1 128 128 8 8 conv3b

sconv4b 3 1 128 128 8 8 sconv4

rskip4 3 1 128 128 8 8 conv3b+sconv4b

rconv4 3 1 258 128 8 8 iconv4‖idisp4‖rskip4

rdisp4 3 1 128 2 8 8 rconv4

iupconv3 3 2 128 64 8 4 iconv4

iconv3 3 1 130 64 4 4 iupconv3‖conv2b‖idisp4*

idisp3 3 1 64 2 4 4 iconv3

sconv3 3 1 64 64 4 4 conv2b

sconv3b 3 1 64 64 4 4 sconv3

rskip3 3 1 64 64 4 4 conv2b+sconv3b

rupconv3 3 2 128 64 8 4 rconv4

rconv3 3 1 196 64 4 4 iconv3‖idisp3‖rupconv3‖rskip3‖rdisp4*

rdisp3 3 1 64 2 4 4 rconv3

iupconv2 3 2 64 32 4 2 iconv3

iconv2 3 1 66 32 2 2 iupconv2‖conv1b‖idisp3*

idisp2 3 1 32 2 2 2 iconv2

sconv2 3 1 32 32 2 2 conv1b

sconv2b 3 1 32 32 2 2 sconv2

rskip2 3 1 32 32 2 2 conv1b+sconv2b

rupconv2 3 2 64 32 4 2 rconv3

rconv2 3 1 100 32 2 2 iconv2‖idisp2‖rupconv2‖rskip2‖rdisp3*

rdisp2 3 1 32 2 2 2 rconv2

iupconv1 3 2 32 16 2 1 iconv2

iconv1 3 1 18 16 1 1 iupconv1‖idisp2*

idisp1 3 1 16 2 1 1 iconv1

sconv1 3 1 32 32 1 1 conv0

sconv1b 3 1 32 32 1 1 sconv1

rskip1 3 1 32 32 1 1 conv0+sconv1b

rupconv1 3 2 64 32 2 1 rconv2

rconv1 3 1 68 16 1 1 iconv1‖idisp1‖rupconv1‖rskip1‖rdisp2*

rdisp1 5 1 16 2 1 1 rconv1



References
[1] Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. International Journal of Computer Vision

75(1) (2007) 151–172

[2] Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In:
CVPR. Volume 2. (2017) 7

[3] Zhan, H., Garg, R., Weerasekera, C.S., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth
estimation and visual odometry with deep feature reconstruction. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2018) 340–349

[4] Garg, R., BG, V.K., Carneiro, G., Reid, I.: Unsupervised cnn for single view depth estimation: Geometry to the rescue.
In: European Conference on Computer Vision, Springer (2016) 740–756

[5] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014)

[6] Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2016) 4040–4048


