A. Experiment details

We describe more experiment details in this appendix
to facilitate other researchers to reproduce our work. Our
architecture search is divided into two stages. In the first
stage, we train the stochastic super net to find an opti-
mal architecture distribution. In the second stage, we sam-
ple architectures from the distribution and train them from
scratch.

To train the stochastic super net, we randomly sample
100 classes from the original 1,000 classes of ImageNet.
Training the super net on this smaller proxy dataset is much
faster. We train the stochastic super net for 90 epochs with a
batch size of 192. In each epoch, we first train the operator
parameters w, on 80% of the training set using stochastic
gradient descent with momentum. The initial learning rate
is 0.1, and decay following a cosine decaying schedule. The
momentum is 0.9, and weight decay is 10~%. Next, we train
the architecture distribution parameter 6 on the rest 20% of
the training set with Adam optimizer [[10] with a learning
rate of 102 and weight decay of 5 x 10~%. The split of
weight and architecture parameter training ensure the archi-
tecture generalize to the validation dataset. To control the
Gumbel Softmax in , we use an initial temperature of 5.0
and exponentially anneal it by exp(—0.045) =~ 0.956 every
epoch. For the loss function in (2)), we set « to 0.2 and f3
to 0.6. We use the standard ResNet data augmentation [4]
to process the input images. We found that at the begin-
ning of the training, operators are usually not sufficiently
trained, so their contributions to the accuracy are not clear.
However, their costs are always significantly different from
each other. As a consequence, the super net may always
pick low-cost operators at the beginning of the training. To
prevent this, we postpone the training of the architecture
parameter 8 by 10 epochs to allow operator weights to be
sufficiently trained first. At the end of the super net training,
we sample 6 architectures from the final distribution to be
trained from scratch.

To train the sampled architectures, the training proto-
cols are different for different models. Here we describe
the training protocol for FBNet-{A, B, C}. These models
have an input resolution of 224, channel size scaling of 1.0.
We train the models with a batch size of 256 on 8 GPUs
for 360 epochs. We set the initial learning rate to be 0.1,
and decay 10x at 90, 180, and 270 epochs. The momentum
is 0.9, weight decay is 4 x 107°. We use dropout at the
last convolution layer of the network, and the dropout ratio
is 0.2. We use the standard GoogleNet data augmentation
[19] to randomly resize the image during training.



