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Abstract

In this appendix, more details of the training and net-
work architecture are provided. We also demonstrate more
qualitative results due to the limit of space in the main pa-
per. In addition, we discuss the limitation of our method.

1. Training Details

We train our model in two main steps, i.e., separated-
training and joint-training.
Separated-training. As described in [16, 5], unsupervised
landmark detection is challenging and many schemas need
to be leveraged to regularize the training. In our experi-
ments, we also find it hard to train the geometry estimator
Eg· together with other components at the very start. Thus,
we train the conditional VAE network in X/Y domain sep-
arately as shown in Fig. 1. The loss for separated-training
is defined as:

Lsepar = LCVAE + Lprior (1)

The conditional VAE network consists with an unsu-
pervised geometry estimator Eg· (;π), a geometry encoder
Ec· (; θ) which embeds the landmark heatmaps into the la-
tent space C·, an appearance encoder Ea· (;φ) which em-
beds the appearance information into the latent space A·,
and a decoder D·(; θ) : C· × A· → X/Y , which maps the
latent space back to the image space. Inspired by [7, 13, 2],
we model pθ(x|g, z) as a parametric Laplace and qφ(z|x, g)
as a parametric Gaussian distribution. The parameters can
be estimated by Ec· (; θ), Ea· (;φ) and D·(; θ) respectively.
Thus, we implement the conditional VAE loss as:

LCVAE(x, θ, φ) = KL(qφ(z|x, g)||pθ(z|g))

+Eqφ(z|x,g)[log pθ(x|g, z)]
(2)

Figure 1: Separated training. x ∈ R256×256×3: input image.
gx ∈ R256×256×30: landmark heatmaps. dx ∈ R1×60: landmark
coordinates. cx ∈ R1×256: geometry latent code. ax ∈ R1×256:
appearance latent code. x̂ ∈ R256×256×3: generated image. Eg

x:
geometry estimator. Ec

x: geometry encoder. Ea
x : appearance en-

coder. Dx: decoder for X domain. In practice, we take only x
as the input of Ea

x and it can be found little impact to the perfor-
mance. Components are defined similarly in Y domain.

where the first term is the Kullback-Leibler divergence
LKL. Following [2], the second term can be implemented
with a reconstruction loss. Then, the loss can be formulated



as:

LCVAE(x, θ, φ) = KL(qφ(z|x, g)||pθ(z|g))

+‖x̂− x‖1 +
∑
l

‖ψl(x̂)− ψl(x)‖1 (3)

where x̂ isD·(Ec· (g·), E
a
· (x)) and ψl is the feature obtained

from l-th layer of a VGG-19 model [12] pre-trained on Im-
ageNet. Using the reparametrization trick [7], these net-
works can be trained end-to-end. In the supervised scenario,
LCVAE can encourage the network to learn a complemen-
tary representation of geometry and appearance as demon-
strated in [2]. However, in our unsupervised scenario, there
is no guarantee that Eg· (;π) can distill effective geometry
information. Inspired by the recent development of unsu-
pervised landmark detection [15, 14, 16, 5], we introduce a
prior loss to constrain the learning of geometry estimator:

Lprior =
∑
i6=j

exp(−||g
i − gj ||2

2σ2
) + Var(g) (4)

where gi is the i−th channel of the heatmap g, σ is a
normalization factor and set to be 2 in our experiments.
The first term is a Separation Loss, which encourages each
heatmap to sufficiently cover the object of interest. The sec-
ond term is a Concentration Loss, which encourages the
variance of activations g to be small so that it could con-
centrate at a single location. Together with the prior loss
Lprior, reconstruction loss inLCVAE and equivariance con-
straint [16, 5], we can learn reasonable and effective land-
marks unsupervisedly, which is necessary for the learning
of disentanglement of geometry and appearance. As shown
in Fig. 1, the networks in the separate domain (X/Y ) can
be trained end-to-end with Lsepar.
Joint-training. Once the networks in Fig. 1 are trained sep-
arately within X/Y domain, the model yet has the ability
of disentanglement within domain. However, it so far does
not have the ability of transformation and pose-preserving.
Thus, we further train the model across-domain jointly. As
shown in Fig. 2, the networks with dotted borders are frozen
(i.e., Egx, Ecx, Eax , Egy , Ecy and Eay ) and other networks are
trained end-to-end.

We train four transformers (i.e., Φax→y , Φay→x, Φgx→y ,
Φgy→x) for appearance and geometry transformation respec-
tively. For appearance transformation, transformers are de-
fined in the appearance latent code a·. However, for ge-
ometry transformation, instead of defining transformers in
the geometry latent code c·, we propose to transform ge-
ometry cues in the well-defined landmark heatmaps g· for
their pure-distilled geometry information. As discussed
in Sec. 3.4 in the main paper, since we found it is hard
to learn a transfer between unsupervised learned geometry
heatmaps g· directly, we perform geometry transformation
in the landmark coordinates space. To this end, we ex-
tract the coordinates of each landmark from the heatmaps

Figure 2: Joint training. x ∈ R256×256×3: input image.
gx ∈ R256×256×30: landmark heatmaps. dx ∈ R1×60: landmark
coordinates. cx ∈ R1×256: geometry latent code. ax ∈ R1×256:
appearance latent code. x̂ ∈ R256×256×3: generated image. Eg

x:
geometry estimator. Ec

x: geometry encoder. Ea
x : appearance en-

coder Dx: decoder for X domain. Φa
x→y: appearance transformer.

Φg
x→y: geometry transformer. Components are defined similarly

in Y domain. R−1: re-normalisation operator for converting land-
mark heatmaps to landmark coordinates. R−1: the inverse opera-
tion of R−1.

directly with a re-normalisation operator R−1. R−1 is a
differentiable operator that can transfer landmark heatmaps
g· ∈ R256×256×30 to landmark coordinates d· ∈ R1×60 as
defined in [5], where R can do the inverse operation. The
joint loss can be formulated as:

Ljoint = Lacon + Lacyc + Lgcyc + Lpixcyc

+ Laadv + Lgadv + Lpixadv

(5)

The first term is the proposed cross-domain appearance con-
sistency loss. Other terms are cycle-consistency losses and
adversarial losses corresponding to the appearance, geome-
try and pixel space respectively. We formulate the definition
of all these terms below.
Cross-domain appearance consistency loss:

Lacon = ‖ζ(x)− ζ(Dy (cx→y, ax→y))‖
+ ‖ζ(y)− ζ(Dx (cy→x, ay→x))‖

(6)

where ζ is the Gram matrix [4, 6] calculated with
a pre-trained VGG-16 [12] network, cx→y equals to
Ecy(Φgx→y(gx)), which is the geometry code transformed
from X to Y , ax→y equals to Φax→y(ax), which is the ap-
pearance code transformed from X to Y , and Dy(, ) refers
to decoder of Y domain.



Cycle-consistency loss in appearance space:

Lacyc =Ex∼X [||ax→y→x − ax||1]

+Ey∼Y [||ay→x→y − ay||1]. (7)

where ax→y→x equals to Φay→x(Φax→y(ax)) and ay→x→y
equals to Φax→y(Φay→x(ay)).
Cycle-consistency loss in geometry space:

Lgcyc =Ex∼X [||dx→y→x − dx||1]

+Ey∼Y [||dy→x→y − dy||1]. (8)

where dx→y→x equals to Φgy→x(Φgx→y(dx)) and dy→x→y
equals to Φgx→y(Φgy→x(dy)).
Cycle-consistency loss in pixel space:

Lpixcyc =Ex∼X [||x̂x→y→x − x||1]

+Ey∼Y [||ŷy→x→y − y||1] (9)

where x̂x→y→x equals to Dx(Ecx(gx→y→x), ax) and
ŷy→x→y equals to Dy(Ecy(gy→x→y). gx→y→x is the land-
mark heatmaps calculated with R(dx→y→x) and similarly
gy→x→y is calculated with R(dy→x→y).
Adversarial loss in appearance space of domain Y :

Laadv =Eax∼q(ax)[log(1− Say (Φax→y(ax)))]

+ Eay∼q(ay)[log(Say (ay))]
(10)

where Say is a discriminator that tries to distinguish between
translated appearance latent codes and real appearance la-
tent codes in Y domain. The discriminator Sax and the ad-
versarial loss are defined similarly in domain X .
Adversarial loss in geometry space of domain Y :

Lgadv =Edx∼p(dx)[log(1− Sgy (Φgx→y(dx)))]

+ Edy∼p(dy)[log(Sgy (dy))]
(11)

where Sgy is a discriminator that tries to distinguish between
translated landmark coordinates and real landmark coordi-
nates in Y domain. The discriminator Sgx and the adversar-
ial loss are defined similarly in domain X .
Adversarial loss in pixel space of domain Y :

Lpixadv =Edx∼p(dx),ay∼q(ay)[log(1− Spixy (Dy(cx→y, ay)))]

+ Ey∼Y [log(Spixy (y))]
(12)

where cx→y equals to Ecy(R(Φgx→y(dx))), Spixy is a dis-
criminator that tries to distinguish between translated im-
ages and real images in Y domain. The discriminator Spixx
and the adversarial loss are defined similarly in domain X .
Total loss. Combining the losses in separated-training and
joint-training, the full loss function of our method can be
defined as:

Ltotal = λ0LCVAE + λ1Lprior + λ2Lacon + λ3Lacyc
+ λ4Lgcyc + λ5Lpixcyc + λ6Laadv + λ7Lgadv + λ8Lpixadv

(13)

We first perform separated-training for 40 epochs. Then,
joint-training is done for 20 epochs. In all experiments, we
use a batch size of 8 and set the loss weights to λ0 = 10,
λ1 = 1, λ2 = 1, λ3 = 0.1, λ4 = 0.1, λ5 = 1, λ6 = 0.1,
λ7 = 0.1, λ8 = 1. We train all of the models use the
Adam [7] optimizer with (β1, β2) = (0.5, 0.999) and an ini-
tial learning rate of 0.0001. The learning rate is decreased
by half every 100, 000 iterations.

2. Network Architecture Details

We use Stack-Hourglass network [10] for the geometry
estimator Egx. For the mapping from gx to x̂ (Ecx and Dx

with skip-connection), we use the UNet architecture [11]
provided by [17]. A same architecture of Ecx is adopted
for the appearance encoder Eax . The details of Eax (Ecx) are
shown in Fig. 3. The details of the decoder Dx is shown in
Fig. 4. For the transformer Φax↔y (Φgx↔y) and the discrim-
inator Sax (Sgx), we use a simple 4-layer fully-connection
network followed with ReLU, as shown in Fig. 5. Note that
for Φg· , the input (output) dimension is 16, rather than 60 for
the use of PCA embedding. For pixel level adversarial loss,
we use the discriminator provided by [9]. Architectures are
defined same in Y domain.

Figure 3: Architecture details. Architecture of encoder Ea
· and

Ec
· .

Figure 4: Architecture details. Architecture of encoder D·.

Figure 5: Architecture details. Architecture of Φa
· , Sa

· , Φg
· and

Sg
· .



Figure 6: Qualitative results. Results of rendered sports car → commercial vehicle task.

3. More Qualitative Results
We demonstrate more results of our experiments on the

rendered bear, wolf [18], sports car and commercial vehi-
cle [3], which was not shown in the main paper due to the
space limit. In Fig. 7, we show the task of bear↔ wolf. In
Fig. 6, we show the task of sports car→ commercial vehi-
cle. Each sports car in different pose is translated to three
types of commercial vehicles respectively by taking corre-
sponding appearance references.

Figure 7: Qualitative results. Results of rendered bear ↔ wolf
task.

4. Limitation
Although our method can achieve compelling results in

many translation tasks with large domain geometry varia-

tions, the results are far from uniformly positive in some
extremely unconstrained and noisy scenarios. To push the
limits of our method, we collect several categories of ob-
jects in ImageNet [1] and COCO [8] dataset, e.g., car and
bus, cow and horse, etc. These images from in-the-wild
datasets are extremely unconstrained for the large appear-
ance variations together with large geometry variations. For
example, images of bus have different views, scales and
appearance and some buses are even part-missing. Fig. 8
shows several typical failure cases. We observed that the
main cause of the failure of our method is lying on the fail-
ure of unsupervised geometry estimator. Handling transla-
tion in extremely unconstrained scenarios is an important
problem for future work.

Figure 8: Limitation. Failure cases in bus → car task on Ima-
geNet.
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