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Abstract

In this appendix, more details of the training and net-
work architecture are provided. We also demonstrate more
qualitative results due to the limit of space in the main pa-
per. In addition, we discuss the limitation of our method.

1. Training Details

We train our model in two main steps, i.e., separated-
training and joint-training.
Separated-training. As described in [16} 5], unsupervised
landmark detection is challenging and many schemas need
to be leveraged to regularize the training. In our experi-
ments, we also find it hard to train the geometry estimator
EY together with other components at the very start. Thus,
we train the conditional VAE network in X/Y domain sep-
arately as shown in Fig.[I] The loss for separated-training
is defined as:

‘Csepar = ‘CCVAE + ‘Cprior (1)

The conditional VAE network consists with an unsu-
pervised geometry estimator £ (; ), a geometry encoder
E<(;6) which embeds the landmark heatmaps into the la-
tent space C'., an appearance encoder E*(;¢) which em-
beds the appearance information into the latent space A.,
and a decoder D.(;0) : C. x A. — X/Y, which maps the
latent space back to the image space. Inspired by [7, 13} 2],
we model pg(z|g, z) as a parametric Laplace and g4(z|x, g)
as a parametric Gaussian distribution. The parameters can
be estimated by E°(;0), E°(; ¢) and D.(;0) respectively.
Thus, we implement the conditional VAE loss as:

Lovar(z,0,0) = KL(qs(2]7, 9)|Ipe(2]9))
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Figure 1: Separated training. = € R**%*255%3: input image.
gx € R2P6%256X30: landmark heatmaps. d, € R'*%%: landmark
coordinates. ¢, € R'*?55; geometry latent code. a, € R**?5%:
appearance latent code. & € R?P6*256%3: generated image. EY:
geometry estimator. Fg: geometry encoder. E5: appearance en-
coder. D,: decoder for X domain. In practice, we take only =
as the input of E} and it can be found little impact to the perfor-
mance. Components are defined similarly in Y domain.

where the first term is the Kullback-Leibler divergence
Lx1,. Following [2], the second term can be implemented
with a reconstruction loss. Then, the loss can be formulated



as:
Lovar(z,0,0) = KL(gy(z[2, 9)l|pe(2]9))
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where 2 is D.(E¢(g.), E*(x)) and v, is the feature obtained
from [-th layer of a VGG-19 model [12]] pre-trained on Im-
ageNet. Using the reparametrization trick [[7], these net-
works can be trained end-to-end. In the supervised scenario,
Lcvyag can encourage the network to learn a complemen-
tary representation of geometry and appearance as demon-
strated in [2]. However, in our unsupervised scenario, there
is no guarantee that £ (; ) can distill effective geometry
information. Inspired by the recent development of unsu-
pervised landmark detection [15} 14} |16} 5], we introduce a
prior loss to constrain the learning of geometry estimator:
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where ¢° is the i—th channel of the heatmap g, o is a
normalization factor and set to be 2 in our experiments.
The first term is a Separation Loss, which encourages each
heatmap to sufficiently cover the object of interest. The sec-
ond term is a Concentration Loss, which encourages the
variance of activations g to be small so that it could con-
centrate at a single location. Together with the prior loss
Lprior, reconstruction loss in Lcyvag and equivariance con-
straint [[16, |5]], we can learn reasonable and effective land-
marks unsupervisedly, which is necessary for the learning
of disentanglement of geometry and appearance. As shown
in Fig. |1} the networks in the separate domain (X/Y") can
be trained end-to-end with Lgcpar.

Joint-training. Once the networks in Fig.[T]are trained sep-
arately within X/Y domain, the model yet has the ability
of disentanglement within domain. However, it so far does
not have the ability of transformation and pose-preserving.
Thus, we further train the model across-domain jointly. As
shown in Fig.|2] the networks with dotted borders are frozen
(ie., B9, B, B2, E;j s E; and E;) and other networks are
trained end-to-end.

We train four transformers (i.e., 3_,,, ®5_,., ®7_, .
J_,,) for appearance and geometry transformation respec-
tively. For appearance transformation, transformers are de-
fined in the appearance latent code a.. However, for ge-
ometry transformation, instead of defining transformers in
the geometry latent code c., we propose to transform ge-
ometry cues in the well-defined landmark heatmaps g. for
their pure-distilled geometry information. As discussed
in Sec. 3.4 in the main paper, since we found it is hard
to learn a transfer between unsupervised learned geometry
heatmaps g. directly, we perform geometry transformation
in the landmark coordinates space. To this end, we ex-
tract the coordinates of each landmark from the heatmaps

R256X256X3:

Figure 2: Joint training. = € input image.
g € R256%256%30: 1andmark heatmaps. d, € R**%: landmark
coordinates. ¢, € R*?55; geometry latent code. a, € R1*?%¢:
appearance latent code. & € R?P6%256%3: generated image. EY:
geometry estimator. Fg: geometry encoder. ES: appearance en-
coder D,: decoder for X domain. ®3_,, : appearance transformer.
®Y_,,: geometry transformer. Components are defined similarly
in Y domain. R™*: re-normalisation operator for converting land-
mark heatmaps to landmark coordinates. R™': the inverse opera-
tion of R™*.

directly with a re-normalisation operator R~*. R~!is a
differentiable operator that can transfer landmark heatmaps
g. € R256%256%30 ¢4 Jandmark coordinates d. € R1*60 ag
defined in [S], where R can do the inverse operation. The
joint loss can be formulated as:

‘CjOil’lt = ’Cgon + ‘ngc + ‘ngc + E}g;ﬁ (5)
+ ‘ngv + Eidv + Egtz:lfl

The first term is the proposed cross-domain appearance con-
sistency loss. Other terms are cycle-consistency losses and
adversarial losses corresponding to the appearance, geome-
try and pixel space respectively. We formulate the definition
of all these terms below.

Cross-domain appearance consistency loss:

Cgon = HC('I) - C(Dy (Cw—>y7 ax—)y))”
+11€() = ¢(Da (¢y—a, ay—a))l

where ( is the Gram matrix [4, 6] calculated with
a pre-trained VGG-16 [12] network, c;_,, equals to
Eg(®9_,,(gz)), which is the geometry code transformed
from X to Y, a,,, equals to ®;_, (a,), which is the ap-
pearance code transformed from X to Y, and D,(, ) refers
to decoder of Y domain.

(6)



Cycle-consistency loss in appearance space:

Lye =Eonx[llaz—y—a — azll]
HEy v [[|ay—a—y — ayl1]. (7
where a; .y, equals to @, (P, (as)) and ay—.yy
equals to @5 _, (®5_, . (ay)).
Cycle-consistency loss in geometry space:
‘ngc =Ez~x [| ‘dm%yﬂm’ —dy ‘ |1]
+Ey~YH|dy—>x—>y - dy”ﬂ- ®)
where dy—yy—, equals to ®9_, (®F_, (d.)) and dyy s,
equals to ®J_, (®9_,,(dy)).
Cycle-consistency loss in pixel space:
L8 =B x[llZa—sy—so — 2|l1]
FEyv [[[9y -2y — yll1] )
where Ty, equals to Dy(ES(gy—y—s),az) and
Uy—sz—y €quals to Dy (Eg(gy—z—y)- Gusy—a is the land-
mark heatmaps calculated with R(d;—,,— ) and similarly

Gy—a—y 18 calculated with R(dy— 5y ).
Adversarial loss in appearance space of domain'Y :

‘ngv :Eaqu(am)[IOg(l - Ss(q)gay(ax)))]

+ anwq(ay) UOg(SZ (ay))]
where Sy is a discriminator that tries to distinguish between
translated appearance latent codes and real appearance la-
tent codes in Y domain. The discriminator S2 and the ad-

versarial loss are defined similarly in domain X.
Adversarial loss in geometry space of domain Y :

Ly =Ed,mp(a log(l = S7(97,, (dr)))]
+ Eaq, ~p(a,) [l0g(57(dy))]

where 7 is a discriminator that tries to distinguish between
translated landmark coordinates and real landmark coordi-
nates in Y domain. The discriminator S¢ and the adversar-
ial loss are defined similarly in domain X.

Adversarial loss in pixel space of domain Y :

Egégf, :Edz ~p(ds),ay~q(ay) [log(l - S;{/nx (D’ll (Cﬂv—)ya ay)))]
+ Eyoy [log(Sy™ (y))]

(10)

(1)

12)
where ¢, ,, equals to ES(R(®Y_,,(d,))), SL" is a dis-
criminator that tries to distinguish between translated im-
ages and real images in Y domain. The discriminator SP'®
and the adversarial loss are defined similarly in domain X.
Total loss. Combining the losses in separated-training and
joint-training, the full loss function of our method can be
defined as:

Liotal = ALVAE + A1 Lprior + 2Ly + A3LEy,
+ ML A A LD £ NG Ly, + ALY+ N L2

cyc cyc adv adv

(13)

We first perform separated-training for 40 epochs. Then,
joint-training is done for 20 epochs. In all experiments, we
use a batch size of 8 and set the loss weights to \g = 10,
AM=LX=12=01Xx=012X =1, X =0.1,
A7 = 0.1, A\g = 1. We train all of the models use the
Adam [[7] optimizer with (31, 82) = (0.5,0.999) and an ini-
tial learning rate of 0.0001. The learning rate is decreased
by half every 100, 000 iterations.

2. Network Architecture Details

We use Stack-Hourglass network [[10] for the geometry
estimator /9. For the mapping from g, to & (ES and D,
with skip-connection), we use the UNet architecture [11]]
provided by [17]. A same architecture of Ef is adopted
for the appearance encoder E7. The details of £ (EY) are
shown in Fig.[3] The details of the decoder D, is shown in
Fig. E} For the transformer @3, (®7.,,) and the discrim-
inator S¢ (S9), we use a simple 4-layer fully-connection
network followed with ReLU, as shown in Fig. E} Note that
for ®7, the input (output) dimension is 16, rather than 60 for
the use of PCA embedding. For pixel level adversarial loss,
we use the discriminator provided by [9]. Architectures are
defined same in Y domain.

Type Kernel Size | Output Channels Output Size

Input N/A 3 256

Convolution 4 64 128
LeaklyReLU+Conv+IN 4 128 64
LeaklyReLU+Conv+IN 4 256 32
LeaklyReLU+Conv+IN 4 256 16
LeaklyReLU+Conv+IN 4 256 8
LeaklyReLU+Conv+IN 4 256 4
LeaklyReLU+Conv+IN 4 256 2
LeaklyReLU+Conv+IN 4 256 1
1 1

Conv 256

Figure 3: Architecture details. Architecture of encoder £ and
E°.

Type Kernel Size | Output Channels Output Size
Conv 1 256 1
LeaklyReLU+DeConv+IN 4 256 2
LeaklyReLU+DeConv+IN 4 256 4
LeaklyReLU+DeConv+IN 4 256 8
LeaklyReLU+DeConv+IN 4 256 16
LeaklyReLU+DeConv+IN 4 256 32
LeaklyReLU+DeConv+IN 4 128 64
LeaklyReLU+DeConv+IN 4 64 128
LeaklyReLU+DeConv+Tanh 4 3 256

Figure 4: Architecture details. Architecture of encoder D..

Output Channels | Output Size T Output Channels | Output Size

256 16
64
256
64
16

]

1
1024 1
512 1
256 1

Figure 5: Architecture details. Architecture of %, S¢, 7 and
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Figure 6: Qualitative results. Results of rendered sports car — commercial vehicle task.

3. More Qualitative Results

We demonstrate more results of our experiments on the
rendered bear, wolf 18], sports car and commercial vehi-
cle [3]], which was not shown in the main paper due to the
space limit. In Fig.[7] we show the task of bear <+ wolf. In
Fig. |6l we show the task of sports car — commercial vehi-
cle. Each sports car in different pose is translated to three
types of commercial vehicles respectively by taking corre-
sponding appearance references.
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Figure 7: Qualitative results. Results of rendered bear <> wolf
task.

4. Limitation

Although our method can achieve compelling results in
many translation tasks with large domain geometry varia-

tions, the results are far from uniformly positive in some
extremely unconstrained and noisy scenarios. To push the
limits of our method, we collect several categories of ob-
jects in ImageNet [1]] and COCO [8]] dataset, e.g., car and
bus, cow and horse, efc. These images from in-the-wild
datasets are extremely unconstrained for the large appear-
ance variations together with large geometry variations. For
example, images of bus have different views, scales and
appearance and some buses are even part-missing. Fig. [§]
shows several typical failure cases. We observed that the
main cause of the failure of our method is lying on the fail-
ure of unsupervised geometry estimator. Handling transla-
tion in extremely unconstrained scenarios is an important
problem for future work.

Input CycleGAN UNIT MUNIT DRIT Ours

Figure 8: Limitation. Failure cases in bus — car task on Ima-
geNet.
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