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1. Overview

This supplementary material is organized as follows. In Section 2} we will show the proofs of Proposition 1 and 2. Then,
in Section [3] we will present more details on the experiments. This includes quantitative comparison of the results in terms
of SSIM, and more examples on the dataset [S]], and on real images.

2. Proofs of Proposition 1 and 2
2.1. Proof of Proposition 1

Proof. Since
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Since ¢(Vz) is restricted to be normal distribution with a constant covariance matrix, and the KL-divergence between two
normal distributions is
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2.2. Proof of Proposition 2
Proof. Denote Vz(*+1) for V2 for simplicity of notation. By ignoring the irrelevant terms in
mingeo 553 (I1Vg — k@ V2|3 4 52| [5mEw2| 2] Sloger+ AR+ > 012 @)

and let 8% = {07, ..., oy } denotes the optimal solution, we have

N
. Vz2)il2+ A
07 = argmin, .o E (logo; + %

=1 g

).

2
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Figure 1: Ground truth kernels and the corresponding sizes of the dataset [3].

manmade | natural | people | saturated | text | average

Fergus-06 [2] 0.628 0.744 | 0.858 0.687 0.629 | 0.710
Cho-09 [1]] 0.729 0.854 | 0.897 0.768 0.718 | 0.793
Xu-10 [13] 0.869 0.924 | 0978 0.840 0.899 | 0.902
Krishnan-11 [3] 0.742 0.854 | 0.922 0.783 0.744 | 0.809
Levin-11 [6]] 0.823 0.891 | 0.938 0.823 0.757 | 0.847
Sun-13 [11]] 0.841 0.933 | 0.954 0.815 0.851 | 0.879
Xu-13 [14] 0.821 0.904 | 0.967 0.818 0.867 | 0.875
Zhang-13 [15]] 0.761 0.885 | 0.961 0.808 0.775 | 0.838
Zhong-13 [16] 0.785 0.887 | 0.962 0.812 0.747 | 0.839
Michaeli-14 [7] 0.753 0.836 | 0.937 0.771 0.676 | 0.795
Pan-14 [9] 0.796 0.903 | 0.957 0.815 0.815 | 0.857
Perrone-14 [10] 0.820 0917 | 0.957 0.794 0.815 | 0.860
DeepDeblur-17 [§]] 0.659 0.793 | 0.902 0.769 0.618 | 0.748
DeblurGAN-17 [4]] 0.608 0.728 | 0.852 0.727 0.609 | 0.705
Ours 0.875 0.949 | 0.980 0.850 0912 | 0.913

Table 1: Quantitative comparison on the dataset in [5]. Performance is measured in average SSIM values on grayscale
images. Different column denotes different category of images. The last column is the average SSIM value over the whole
dataset.

If #{A’} > M, which breaks cardinality constraint, some of the i € A’ has to be set to 7. For a > 7, the cost of letting

o* = 7 instead of a is given by
2

h(@) = f(r) = f(a) = 5 —loga +log T — %

2 . . . . . .
where f(0) = logo + 555. Since Ya > 7, h'(a) > 0, the cost of letting o} = 7 instead of a; strictly increase as a; increase.

Since a; = (|(Vz);|2 + A)2, the optimal solution in this case will be achieved by letting o = 5 wheni € A and o7 = 7
otherwise, which can also be expressed by (3). The proof completes. O

3. Additional experiments and examples.

In the article, the quantitative comparison of different methods on the the synthetic dataset in Lai et al. 3] is listed in terms
of the PSNR value. In this section, the quantitative comparison in terms of average SSIM is listed in Table [I|which used the
same results as Table 1 in the article. See Figure|l|for the four ground truth kernels of different sizes used in [5] to generate
the dataset, and see Figure [2]for visual inspection of the results on five images from the dataset [5] by the proposed method.

These 5 images are taken from 5 categories respectively: “manmade”, “natural”, “people’, “saturated” and “text”. See Fig. 3
for visual comparison of different methods on more real images, including some real images summarized in [5].
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Figure 2: Demonstration of some results on the images from the dataset [5] by the proposed method. The first column
shows blurry images; the second column shows ground truth images; the third column shows our deblurred results; the fourth
column shows the kernels estimated by our algorithm. .
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Figure 3: Visual comparison of the results from different methods. They are better viewed using zoom-in.
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