
Supplementary Material for Disentangling Latent Hands for Image Synthesis
and Pose Estimation

Linlin Yang
University of Bonn, Germany

yangl@cs.uni-bonn.de

Angela Yao
National University of Singapore, Singapore

ayao@comp.nus.edu.sg

In the following supplementary material, we present
more details for our proposed method. Section A provides
the derivations for Section 3, the Methodology, in the main
manuscripts; Section B provides the details of our network
architectures. Ablation experiments and more results are
presented in Section C and Section D respectively. Sec-
tion E shows the numerical evaluation of disentanglement.
Note that all the notation and abbreviations here are consis-
tent with the main manuscript.

A. Methodology

In this section, we provide full derivations of Eq. 2 and
Eq. 4 in the main manuscript and get the joint objective
(i.e. Eq. 5 in the main manuscript) of dVAE. Remember that
we assume z can be fully specified by zy1 and zy2 with ob-
served y1 and y2, and define a disentangled z = [zy1

, zy2
]

based on y1, y2 and x. In the disentangling step, we factor-
ize the joint distribution log p(x,y1,y2) into log p(y1,y2)
and log p(x|y1,y2). We define the distributions via the la-
tent variable z and then we have:

log p(y1,y2)

=

∫
z

qφy1
,φy2

(z|y1,y2) log
qφy1

,φy2
(z|y1,y2)

pθ(z|y1,y2)
dz

+

∫
z

qφy1 ,φy2
(z|y1,y2) log

p(z)pθ(y1,y2|z)
qφy1 ,φy2

(z|y1,y2)
dz

= DKL(qφy1
,φy2

(z|y1,y2)||pθ(z|y1,y2))

+ Ez∼qφy1
,φy2

log pθ(y1,y2|z)

−DKL(qφy1
,φy2

(z|y1,y2)||p(z)),

(1)

and

log p(x|y1,y2)

=

∫
z

qφy1
,φy2

(z|y1,y2) log
qφy1

,φy2
(z|y1,y2)

pθ(z|y1,y2,x)
dz

+

∫
z

qφy1 ,φy2
(z|y1,y2) log

pθ(x|z,y1,y2)pθ(z|y1,y2)

qφy1 ,φy2
(z|y1,y2)

dz

= DKL(qφy1
,φy2

(z|y1,y2)||pθ(z|y1,y2,x))

+ Ez∼qφy1
,φy2

log pθ(x|z,y1,y2)

−DKL(qφy1
,φy2

(z|y1,y2)||pθ(z|y1,y2)).
(2)

Combining the two log probabilities, we get the joint distri-
bution between x, y1 and y2 as:

log p(x,y1,y2)

= log p(x|y1,y2) + log p(y1,y2)

= DKL(qφy1
,φy2

(z|y1,y2)||pθ(z|y1,y2,x))

+ Ez∼qφy1
,φy2

log pθ(x|z,y1,y2)

+ Ez∼qφy1
,φy2

log pθ(y1,y2|z)

−DKL(qφy1 ,φy2
(z|y1,y2)||p(z))

= DKL(qφy1
,φy2

(z|y1,y2)||pθ(z|y1,y2,x))

+ Ez∼qφy1
,φy2

log pθ(x,y1,y2|z)

−DKL(qφy1
,φy2

(z|y1,y2)||p(z)).

(3)

Since DKL(·) ≥ 0 for any distribution and z is a disentan-
gled representation, the evidence lower bound is obtained
below:

log p(x,y1,y2)

≥ ELBOdis(x,y1,y2, φy1 , φy2 , θy1 , θy2 , θx)

= Ez∼qφy1
,φy2

log pθ(x,y1,y2|z)

−DKL(qφy1
,φy2

(z|y1,y2)||p(z))
= Ez∼qφy1 ,φy2

log pθx(x|z)

+ Ezy1
∼qφy1

log pθy1
(y1|zy1

)

+ Ezy2
∼qφy2

log pθy2
(y2|zy2

)

−DKL(qφy1
,φy2

(z|y1,y2)||p(z)).

(4)



To train the unpaired encoder qφx(z|x) in the embedding
step [5], we fix the decoders and maximize the following:

L(φx|θy1 , θy2 , θx)

= −DKL(qφx(z|x)||pθ(z|x,y1,y2))

= ELBOemb(x,y1,y2, φx)− log p(x,y1,y2)

= Ez∼qφx log pθ(x,y1,y2|z)
−DKL(qφx(z|x)||p(z))− log p(x,y1,y2)

= Ez∼qφx log pθx(x|z) + Ezy1
∼qφx log pθy1

(y1|zy1)

+ Ezy2∼qφx log pθy2
(y2|zy2

)−DKL(qφx(z|x)||p(z))
− log p(x,y1,y2).

(5)
Here log p(x,y1,y2) is constant with respect to φx and θ’s
and hence can be dropped. So we get the final objective by
combining the disentangling and embedding evidence lower
bounds:

L(φx, φy1
, φy2

, θx, θy1
, θy2

)

= ELBOdis(x,y1,y2, φy1
, φy2

, θx, θy1
, θy2

)

+ ELBOemb(x,y1,y2, φx).

(6)

B. Model Architectures
Here we specify the design of our networks. The encoder

and decoder architectures for RGB images and background
content are shown in Table 1. For encoding images, we use
ResNet-18 [2]; for decoding images, we follow the decoder
architecture DCGAN [4]. Here, we use 256 × 256 RGB
images as the input of ResNet-18. Also the encoder and
decoder architectures for CPose, viewpoint or 3DPose are
detailed in Table 2. Especially, for additional zu, we design
shared layers for the decoder of RGB images and 3DPose as
shown in Table 3. Abbreviations: N for number of kernels
or neurons, FC stands for fully connected layers, TCONV
stands for transposed convolutional layers with 5 × 5 ker-
nels, stride of size 2 and padding of size 1, BN stands for
batch normalization layers. For example, FC-(N512) refers
to a fully connected layer with 512 neurons.

Encoder Decoder

ResNet-18

FC-(N8192)
Reshape(8,8,128), BN
TCONV-(N64), BN, Relu
TCONV-(N32), BN, Relu
TCONV-(N16), BN, Relu
TCONV-(N8), BN, Relu
TCONV-(N3), Tanh
Reshape(256,256,3)

Table 1: Encoder and Decoder architectures for hand images or
background content.

Encoder Decoder

Flatten FC-(N512), Relu
FC-(N512), Relu FC-(N512), Relu
FC-(N512), Relu FC-(N512), Relu
FC-(N512), Relu FC-(N512), Relu
FC-(N512), Relu FC-(N512), Relu
FC-(N512), Relu FC-(N9) or (N63)
FC-(N512) Reshape (3,3,1) or (21,3,1)

Table 2: Encoder and Decoder architectures for viewpoint, CPose
or 3DPose. The final reshape is (3,3,1) for the viewpoint and
(21,3,1) for CPose and 3DPose.

Decoder

FC-(N8192)
Reshape(8,8,128), BN
TCONV-(N64), BN, Relu
TCONV-(N32), BN, Relu
TCONV-(N16), BN, Relu
TCONV-(N8), BN, Relu

TCONV-(N3), Tanh
Reshape(256,256,3)

FC-(N512), Relu
FC-(N512), Relu
FC-(N63)
Reshape(21,3,1)

Table 3: Decoder architectures for images and 3DPose with
shared layers. The final reshape is (256,256,3) for the images and
(21,3,1) for 3DPose.

2 2.5 3 3.5 4

Iterations 10
4

500

1000

1500

2000

2500

3000

3500

Im
a

g
e

 R
e

c
o

n
s
tr

u
c
ti
o

n
 L

o
s
s

=1,d=512

=10,d=512

=10,d=128

=10,d=32

=100,d=512

2 2.5 3 3.5 4

Iterations 10
4

0

50

100

150

200

K
L

 D
iv

e
rg

e
n

c
e

 L
o

s
s

=1,d=512

=10,d=512

=10,d=128

=10,d=32

=100,d=512

Figure 1: Ablative study on different parameters β and d. Left:
Image reconstruction loss. Right: KL divergence loss.

C. Ablation Experiments

We test different β and d for image reconstruction on
STB. For convenience, we set dzy1

= dzy2
= 0.5d.

Fig. 1 shows the image reconstruction loss (i.e. mean
squared reconstruction error) and the KL divergence loss
(i.e. DKL(qφ(z|·)||p(z))). We can see that as β increases,



Figure 2: Latent space walk. The images in the red boxes are provided inputs. The first two rows show synthesized images when interpo-
lating on the latent 3DPose space; the third row shows skeletons of the reconstructed 3DPose. The fourth row shows synthesized images
when the pose is fixed (to the fifth column) when interpolating in the content latent space.

Figure 3: Latent space walk, interpolating zu representing image background content. The images along with groundtruth 3DPose (red)
in the red box are the input points; the first row shows generated images and the second row corresponding reconstructed 3DPose (blue).
Note that because we are interpolating only on the background content, the pose stays well-fixed.

CPose Viewpoint

Figure 4: Latent space walk. The 3DPose in the red boxes are provided inputs. The left most five rows show synthesized 3DPose when the
viewpoint is fixed and interpolating in the CPose latent space; the right most five rows show synthesized 3DPose when the CPose is fixed
and interpolating in the viewpoint latent space.



Figure 5: Pose transfer. The first column corresponds to images
from which we extract the 3DPose (ground truth pose in second
column); the first row corresponds to tag images columns we ex-
tract the latent content; the 2-5 rows, 3-5 columns are pose trans-
ferred images.

Figure 6: Random sampling.

the image reconstruction loss increases but the KL diver-
gence loss decreases. β here trades off between latent space
capacity and reconstruction accuracy. The use of β has been
discussed in the work [3]. In the experiments, we empiri-
cally set β = 100 for image synthesis and β = 0.01 for
pose estimation. As d increases, both the image reconstruc-
tion loss and the KL divergence loss increase. It is probably
because the latent space will be over-completed when d is
large enough. So we prefer to choose d = 64 in the experi-
ments.

D. Additional Results
This section shows more results. In Fig. 2 and 5, we pro-

vide additional latent space random walk and pose transfer
results with fully specified z. In Fig. 3, we provide addi-

zy1 zy1 zy2 zy2 zcross Noise
∼ qφx ∼ qφy1

∼ qφx ∼ qφy2
∼ qφx ∼ N (0, I)

y1 0.773 0.779 0.561 0.562 0.782 0.555
y2 1.84 1.99 1.26 1.27 1.09 2.15

Table 4: AUC for CPose y1 (higher is better) and MSE for view-
point y2 (lower is better).

tional illustrations of random walk on zu. In Fig. 4, we
show random walk on the CPose part and the viewpoint
part during hand pose estimation. We show the synthesized
3DPose when we interpolate the CPose while keeping the
viewpoint fixed and when we interpolate viewpoint while
keeping the CPose fixed. In both random walks, the recon-
structed poses demonstrate a smoothness and consistency of
the latent space. In addition, we randomly sample 10 points
of z from N (0, I) and show the corresponding synthesize
images in Fig. 6.

E. Evaluation of Disentanglement
To evaluate the disentanglement of fully specified latent

z, we fix the dimensionality of d of z to 8 and use the dis-
entanglement metric score from β-VAE [3]. We generate
1000 samples of z32diff according to [3]. 500 samples are used
for training and others for testing. We receive a score of
100%, implying that our representation is completely disen-
tangled. We believe that our (very high) score is due to the
fact that we use labelled factors of variations during training
and only disentangle the latent space into two parts.

The metric from [3] however is not applicable for multi-
ple modalities, so in addition, we generate 300 samples of z
and evaluate our multiple modalities case according to [1].
This approach regresses y1,y2 (CPose and viewpoint re-
spectively) from sub-latent variables zy1

, zy2
. The quality

of the disentanglement is high if zy1
is informative about

y1 but not zy2
and vice-versa. For comparison, we look

at values drawn from noise and from zcross which serve as
lower and upper bounds. Results in Tab. 4 show that our re-
gressed variables fall close to these bounds, indicating that
we are able to disentangle CPose very well, though view-
point could be improved.

References
[1] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin.

Multi-level variational autoencoder: Learning disentangled
representations from grouped observations. In AAAI, 2018.
4

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 2

[3] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. β-vae: Learning basic visual concepts
with a constrained variational framework. In ICLR, 2016. 4



[4] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. In arXiv preprint
arXiv:1511.06434, 2015. 2

[5] Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and
Kevin Murphy. Generative models of visually grounded imag-
ination. In ICLR, 2018. 2


